SIGNER WATER WELL COMPLAINT REVIEW

Prepared by: Alexander Blyth, P.Geol., Ph.D.

Alberta Research Council Inc. Permit to Practice P03619

Prepared for:

Alberta Environment 10th Floor Oxbridge Place 9820 - 106 Street Edmonton, Alberta T5K 2J6

December 31, 2007

Contact Information: Alec Blyth Alberta Research Council Inc. 3608 – 33 Street NW Calgary, Alberta T2L 2A6 Phone: 403-210-5345 E-mail: <u>blyth@arc.ab.ca</u>

EXECUTIVE SUMMARY

In September of 2004 Ms. Signer initiated a complaint of increased methane in her well with EnCana. EnCana's consultant initiated a well investigation on September 2004 and AENV initiated a well investigation in May 2006. In November, 2007, Alberta Research Council (ARC) was contracted by AENV to critically review the scientific and technical data contained in the AENV Signer water well complaint file. In addition, ARC was asked to do an independent review of all relevant data, including new data that has become available through Directive 35 (Standard Baseline Water-Well Testing for CBM/NGC Operations) and other information in the EUB files.

ARC's independent review and evaluation involved the examination of all the data contained in the AENV file and the following additional lines of evidence:

- Review of the local and regional geology and hydrostratigraphy.
- Calculation of hydraulic gradients between the aquifer in the Upper Horseshoe Canyon Formation and the CBM wells.
- A theoretical review of the potential of methane migration along a fracture (potentially induced by well stimulation) between the Horseshoe Canyon aquifer and the CBM well using the observed pressure gradients.
- An estimation of the change in dissolved methane concentrations in the Signer well related to the fluctuations in water level observed in the Signer well.
- A graphical and statistical approach to the evaluation of the major ions, bacteria, gas and isotope chemistry of the Signer well, 145 surrounding water wells from the AENV database and CBM wells in the area.

Alberta Research Council's overall conclusion of the evidence from the review of the AENV and AEUB files, along with a new review and evaluation of additional data and concepts, is that energy development projects in the area most likely had no adverse affects on Ms. Signer's water well.

TABLE OF CONTENTS

1	INTF	RODUC	TION	.1
2	REG	JONAL	GEOLOGIC AND HYDROGEOLOGIC SETTING	.1
	2.1	STRAT	GRAPHY	.1
	2.2	REGIO	NAL STRESS REGIME	.2
	2.3	HYDRC	STRATIGRAPHY AND GROUNDWATER FLOW AND GRADIENTS	.2
3	ENE	RGY W	ELL INFORMATION	.3
4	SIG	NER W	ATER WELL INFORMATION	10
	4.1	INITIAT	ION OF WELL COMPLAINT	10
	4.2	WELL [DESIGN, CONSTRUCTION AND MAINTENANCE	10
	4.3	STRAT	GRAPHY	10
	4.4	Hydro	GEOLOGY	13
		4.4.1	General Groundwater flow directions	13
		4.4.2	Vertical Hydraulic Gradient	13
		4.4.3	Hydraulic Conductivity	13
		4.4.4	Water levels and methane saturation	14
		4.4.5	Potential for Methane Gas Migration	15
	4.5	WATER	R AND GAS CHEMISTRY	15
		4.5.1	Historical Major Ion and Bacteria Chemistry Prior to Complaint	16
		4.5.2	Major lons, Metals and Bacterial Chemistry	16
		4.5.3	Dissolved Organic Chemistry	21
		4.5.4	Atmospheric Elements and Hydrocarbon Gas Chemistry	21
		4.5.5	Stable Carbon Isotope Chemistry on Hydrocarbon Gas	23
5	SUN	IMARY	AND CONCLUSIONS	34
6	CLO	SURE		37
7	REF	ERENC	ES	38

LIST OF TABLES

Table 1 AEUB review of wells near the Signer residence.	8
Table 2 Static water levels in the Signer well.	15
Table 3 Summary of Chemical Analyses for the Signer Water Well	18
Table 4 Energy (and GOWN) well QA/QC data quality.	24
Table 5 Statistical values and T-Tests of the gas and isotone data	33

LIST OF FIGURES

Figure 1 Energy wells in the vicinity of the Signer water well	7
Figure 2 Map showing location of cross-section	11
Figure 3 Geologic cross-section.	12
Figure 4. Piper plot of water chemistry from the Signer well, Surrounding D35 water wel	ls
and the GOWN wells.	19
Figure 5 Schoeller plot of water wells with methane present	20
Figure 6 Schoeller plot of water wells with no methane	20
Figure 7 Histogram of nitrogen concentrations in water wells and energy wells	22
Figure 8 Histogram of the carbon isotope values of methane in all water wells and Energy wells	ју 25
Figure 9 Histogram of the carbon isotope values of ethane in all water wells and energy	
wells	26
Figure 10 Methane concentration versus δ ¹³ C of methane	27
Figure 11 Ethane concentration versus δ ¹³ C of ethane	28
Figure 12 δ ¹³ C Methane versus δ ¹³ C Ethane	29
Figure 13 δ^{13} C Methane versus δ^{13} C CO ₂	30
Figure 14 Mixing plot of δ^{13} C of methane versus the methane/C2+ ratio	31

1 INTRODUCTION

Alberta Research Council (ARC) was contracted by Alberta Environment (AENV) to conduct a review of the technical and scientific data on the subject of a complaint placed by landowner Ms. Debbie Signer, located SE-10-027-22 W4M, near Redland, Alberta. The complaint was about Coal Bed Methane (CBM) activities undertaken by EnCana Corporation and her concerns about the presence of increased methane gas in her water well and an associated decrease in water quality. Historically, methane has been observed in water wells in the Rosebud and Redland areas. This is an expected occurrence because most water wells in the area are completed in coal that can contain methane. The complaint concerned whether CBM activities in the area have increased the amount of methane in the Signer well. ARC undertook this review to assess whether the evidence suggests that energy resource extraction operations have impacted the water well. ARC agreed to work under contract to AENV to independently assess the situation and provide conclusions identifying whether or not the AENV investigation suggests groundwater has been impacted by CBM or conventional oil/gas extraction activities in the area.

This report summarizes ARC's independent conclusions based on scientific and technical data surrounding the investigation of the complaint. The review is based primarily on the collected information in AENV's water well complaint file. Available scientific and technical data include groundwater quality data, water well construction characteristics, oil and gas production activities, and local groundwater gas characteristics. In addition, ARC endeavoured to compile, review and assess supplementary information not included within the complaint file. This supplementary information includes results of an evaluation of CBM Baseline water well testing data in the general area (provided by AENV and WorleyParsons Komex), EUB information on energy wells, digital elevation maps and a geological cross section of the area constructed by ARC.

2 REGIONAL GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1 Stratigraphy

The study area is found within the Alberta Basin. A complete review of the geology of the basin is provided in Mossop and Shetsen (1994). A brief overview is given below. The Alberta basin originated in the late Proterozoic by rifting of the North American craton and early sedimentary deposition was dominated by carbonates, evaporates and shale. Uplift of the Rocky Mountains in the early Cretaceous deposited fluvial sandstones and shales into the developing foreland basin. The changing sea levels during the middle to late Cretaceous resulted in deposition of marine shale and coal-bearing fluvial sandstone. Peat accumulation provided the source material for the major coal-bearing strata including the Manville Group, Belly River Group and Edmonton Group (the latter includes the Horseshoe Canyon Formation). The latter two groups are where the EnCana CBM wells are completed. A period of compression and uplift in the Tertiary led to the deposition of fluvial sandstone, siltstone and shale. Peat accumulation provided the source material for the coals in the Cretaceous/Tertiary Scollard Formation and the Tertiary Paskapoo Formation. Glaciation during the Quaternary eroded the bedrock and deposited unconsolidated sediments on the bedrock. Descriptions of the geology from older to younger that are encountered in the area of investigation are as follows:

Belly River Group

The deepest geological unit penetrated by the EnCana CBM wells is the Belly River Group. The upper part (Oldman Formation) of the Belly River Group consists of sandstones, siltstones and coal (Lethbridge) deposited in a floodplain and lacustrian environment (Beaton et al. 2002).

Bearpaw Formation

A marine transgression deposited fine-grained marine sediments of the Bearpaw Formation directly onto the Belly River Group. These sediments are predominantly shale and siltstone, with some sandstone beds and claystone (Macdonald et al. 1987).

Edmonton Group

The Edmonton group is comprised of four formations, from oldest to youngest: the Horseshoe Canyon Formation, the Whitemud Formation, The Battle Formation and the Scollard Formation. Only the Horseshoe Canyon is present in the study area. The Horseshow Canyon formation consists of shale, siltstone and coal members (Basal, Rockyford, Drumheller, and Weaver), deposited in deltaic and fluvial environments (Beaton et al 2002). In the area, the Horseshoe Canyon Formation is covered by Late Tertiary–Quaternary unconsolidated sediments or till.

2.2 Regional Stress Regime

The stress regime of upper Cretaceous – Tertiary coal-bearing strata in Alberta has a strong correlation to permeability and fracture directions in coal (face cleats). This in turn has a strong control on the direction that "fluids" (both gas and water) tend to migrate in these strata. Rock mechanics theory and field measurements shows that fractures trend in a direction normal to the least compressive stress. Horizontal stress orientations in Alberta have been measured using well breakout analyses (i.e. damage to boreholes caused by stresses acting on the rock) (Bachu and Michael 2002). Based on breakout analysis the most likely azimuth (orientation) of fractures and face cleats in the coal would be about 055°E of N. No energy wells (within 2 km) line up on the 055° azimuth to the Signer well.

2.3 Hydrostratigraphy and Groundwater Flow and Gradients

Regional flow systems across the Alberta Basin are controlled in part by major recharge areas along the Rocky Mountain front in western Alberta. Regional flow within the basin is northeast towards the basin edge (Hitcheon 1969a,b). Bachu (1999) recognised that flow in the northern part of the basin was driven by topography north-eastward, however, flow in Upper Cretaceous rocks in the south-western part of the basin (including the study area) was directed south-westward, driven by erosional rebound due to stripping of up to 3800m of sediments (Parks, and

Tóth 1995; Bachu 1999). Regionally, the Horseshoe Canyon Formation acts as an aquifer above the Bearpaw Formation aquitard. Below the Bearpaw, the upper Belly River Formation acts as an aquifer.

In the Redland area shallow groundwater flow within the overburden is directed towards the Rosebud River. Regional groundwater flow in the Upper Horseshoe Canyon aquifer (Carbon Thompson and Weaver coals where most domestic wells including the Signer well are completed) is directed to the northeast (Bachu and Michael 2002). Hydraulic conductivities of the rock are expected to be low to intermediate and yields from wells in this area are expected to be 1 to 5 imperial gallons per minute (Borneuf 1972). The Signer well was tested at between 0.7 and 2.4 imperial gallons per minute and had an estimated average hydraulic conductivity of 2x10⁻⁶ m/s as estimated by ARC from the available pumping test data.

In the deeper (below 200 m) Horseshoe Canyon Formation groundwater flow is also directed to the northeast. Permeability data for the coal zones are not well reported in the literature. However, it is expected that permeability of the coal decreases with depth of burial. Unpublished data referred to by Bachu and Michael (2002) indicates permeabilities for deep coals on the order of a few mD (millidarcy) which indicates very low primary permeability. Completion data from the EnCana wells in the area suggest that the coals (with the exception of the upper Carbon Thompson and Weaver members of the Horseshoe Canyon) are not water saturated based on pressure measurements and water production data.

Regionally groundwater flow in the Belly River aquifer is directed to the southwest due to erosional uplift (Parks and Tóth 1995; Bachu 1999). Coal permeability is expected to be on the order of a few mD, similar to that in the overlying Horseshoe Canyon coals. Completion data from the EnCana wells in the area show that the coals are not water saturated. The implication of this is that hydrocarbon gases are not expected to be transported from the deep (gas saturated) coals to the shallow (water saturated) coals in a dissolved state.

Large downward vertical gradients between the upper Horseshoe Canyon aquifer (where the Signer well is completed) and the deeper Horseshoe Canyon coals (Drumheller member and below) are expected and calculated (see section 4.4.2). The Horseshoe Canyon and Belly River coal zones are underpressured (or lower) with respect to predicted hydraulic gradients based on elevation differences. These lower pressures have been interpreted to be due to erosional rebound caused by stripping of up to 3800m of sediments (Parks. and Tóth, 1995; Bachu 1999).

3 ENERGY WELL INFORMATION

A map of the energy wells within a minimum 1.5 km radius of the Signer well is shown on Figure 1. A list of gas well information (including the drilling date, loss of circulation, surface casing depth, total depth, cement returns and perforations) was supplied to AENV by EnCana (Appendix A). More detailed information was gathered on several wells in the area because of their proximity (<800 m) from the Signer well and a specific well of concern, identified by Ms.

Signer, with perforation depths of 125.5 m. A review of the tour reports was provided by Brenda Austin of the AEUB (Table 1). All depths on the table are mKb (metres from the Kelly bushing which is usually 3 to 4 metres above ground surface) except that ARC has added the elevation (metres above seal level) of the upper perforations in the energy well from AEUB and EnCana records. The four energy wells in closest proximity (<800 m) to the Signer water well and the specific CBM well (00/05-14-027-22 W4M) that had shallow perforations are discussed below. Compositional and/or isotopic data was available for some of these energy wells in the vicinity of the Signer well and is discussed in section 4 of this report.

The closest energy wells to the Signer well are 00/04-11-27-22W4M and 02/04-11-27-22W4Mand are both approximately 750 m to the south. The 00/04-11-27-22W4M well is completed in the Edmonton, Belly River, Viking and Manville Formations with uppermost perforations from 616.5 to 619.5 mKb (metres from the Kelly bushing which is usually 3 to 4 metres above ground surface) in October 1997. Circulation was lost during the drilling of the surface casing between 12 and 31 m due to gravel in the overburden material above the bedrock. This is the sandy gravel that was encountered during the drilling of the GOWN well in the area and also noted on several water well drilling records in the area. Circulation control was regained by adding bentonite and lime to the drilling fluids. The surface casing was cemented with good returns to the surface noted. It is unlikely that this circulation loss in the overburden could have affected the Signer well which is 750 m to the north and completed in bedrock at about 60 m. AEUB records show that since 2000 this conventional gas well produces 0 to 8.8 m³ of water per month, with a cumulative water production of 74 m³.

The 02/04-11-27-22W4M well is completed in the Edmonton (Horseshoe Canyon) Formation with uppermost perforations from 190.5 to 191.5 mKb and was drilled in January 2004. Well stimulation was done using 100% nitrogen gas. The well had good cement returns on the surface and production casings. There are no apparent drilling and construction issues with this well. Since 2004 this gas well produces 0 to 3.6 m³ of water per month, with a cumulative water production of 19.5 m³. The water is likely coming from the coal and from condensation of water in the gas.

The EnCana energy well 00/07-11-27-22W4M/3 is located approximately 1.2 km to the east of the Signer well. This well was originally completed in the Basal Belly River Formation, Viking & Manville formations with perforations from 1188.5 to 1191.5, 636 to 639 and 604 to 607 mKb. Conventional gas was produced from the two lower perforations. The lower zones were abandoned with a bridge plug and capped with cement in April 2005 and the well was recompleted in the Horseshoe Canyon Formation with the upper perforation between 175.9 to 177.0 mKb. Well stimulation was done using 100% nitrogen gas. AEUB records show that since 2005 this well produces 0 to 1.3 m³ of water per month, and to-date has a cumulative water production of less than 4 m³. This is a relatively small amount of water that is likely coming from the coal and from condensation of water vapour with the gas. No lost circulation was reported for this well and both the surface and production casings had good cement returns. This information does not indicate any apparent drilling and construction issues with this well.

EnCana CBM well 00/05-14-027-22 W4M, located about 1.7 km north of the Signer well, was drilled October 13, 2003, perforated February 15, 2004 and nitrogen fractured on March 2, 2004. The top perforation was stimulated with 3,000 m³ of nitrogen (at standard temperature and pressure) at a rate of 500 m³/min for six minutes. The top set of perforations in this CBM well (125.5 to 126.4 mKb) was in the Weaver coal zone, the same as many of the local water wells including the Signer well. Given the similar depths of the CBM zones and the water wells, with a horizontal distance of 1.7 km, additional evaluation of possible effects of fracturing on the water-bearing aquifer is merited. Three possible effects are considered:

- i. Change in water quantity (water levels) due to initial pressure increase during fracturing and from production of water from the aquifer.
- ii. Change in water quality due to injected nitrogen reacting with the groundwater in the coal zone.
- iii. Change in water quality (increased methane) from methane migration from deeper zones into the water-bearing aquifer.

i. A report by Hydrogeological Consultants Ltd (2005) calculated an estimated increase in water levels in a well, at a 1.2 km distance from the 00/05-14-027-22 W4M CBM well, caused by the injection of nitrogen. They calculated an increase in water level of 0.02 m would be expected to persist for 640 hours at a distance of 1.2 km. The details of the calculation are not presented in the consultants report, but it appears that they have used an equivalent porous media model to determine the changes. This may not adequately model fracture flow in coal aquifers. If the CBM well continued to produce water from the upper perforation during gas production, a drop in water levels would be expected over time. After the CBM well was completed, water was observed (during a video inspection) entering the 125.6 to 126.5 m interval (Hydrogeological Consultants Ltd 2005). The upper perforation of EnCana CBM well 00/05-14-027-22 W4M was unsuccessfully cement squeezed (abandoned) on July 1, 2004. The upper 4 perforations (between 125.5 and 142.4 m) were cement squeezed on July 12, 2004, successfully abandoning the zone. These zones would have been pressure tested to confirm successful abandonment. On October 10 2004 the whole well was abandoned with a cement plug from 17 to 425 m. The current public well ticket for this well states the status as "abandoned gas". As the connection of the CBM well to the local water-bearing aquifer was eliminated by this cement squeeze, completed in within 4 months of fracturing and with only 4 m³ of water was reported recovered from the well, no measurable effect on local water well quantity would be expected.

ii. The injected slug of nitrogen from the fracturing 00/05-14-027-22 W4M could potentially affect the water quality of water wells completed in the same aquifer. After fracturing of the 00/05-14-027-22 W4M CBM well, the nitrogen gas pressure was allowed to bleed off and then the well was "flowed" (pumped) for 75 days to produce back the nitrogen. An evaluation of amount of nitrogen removed from the coal zones during this flow was done by Hydrogeological Consultants Ltd (2005). This was based on an unreferenced graph titled "N₂ concentration decline post-stimulation- Strathmore well" that shows nitrogen concentration of produced gas as a function of flow time. The Hydrogeological Consultants Ltd (2005) evaluation concluded that "there is no reason to expect any significant nitrogen remained in the 125.5 to 126.5 metre coal

zone when the perforations were closed using a cement squeeze". The assumptions that this graph and calculations were based on are not stated so ARC does not have the information to validate the Hydrogeological Consultants Ltd conclusion.

iii. The connection between the upper and lower zones of the 00/05-14-027-22 W4M CBM well, through the shallower and deeper perforations, could potentially lead to the upward migration of methane from a lower zone to the water-bearing aquifer. Water entering the upper perforations of 00/05-14-027-22 W4M would tend to counteract the migration of methane into the water-bearing aquifer. A brief discussion of the physics involved in migration of a methane bubble is presented in section 4.4.5 below and in Appendix D). A study of the potential for methane migration from CBM zones into overlying aquifers is currently under investigation by AENV.

A residential water well is located about 1200 m south-west of the 00/05-14-027-22 W4M CBM well. Mr. Sean Kenny complained to EnCana that sediment started to be produced from an old (1950) water well on his property at NE-10-027-22 W4M and a 2000 well at 07-10-027-22 W4M. A new well for the Kenny property (completed September 29, 2004) at NE-10-027-22 W4M also produced sediment which did not significantly improve through well development. A thorough review of Mr. Kenny's wells is not within the scope of this ARC review. EnCana contracted Hydrogeological Consultants Ltd to investigate these complaints (Hydrogeological Consultants Ltd 2005 and 2006). Remedial work (placement of k-packers and liners) was performed on Mr. Kenny's wells and the amount of sediment did reduce (Hydrogeological Consultants Ltd 2005 and 2006). Unfortunately, no gas compositional or isotopic analyses were done on the energy well or Mr. Kenny's well during the time period of the perceived impact to help determine if there was any connection between the water well problems and CBM drilling.

Theoretical evaluations (Hydrogeological Consultants Ltd 2005) of the pressure pulse created by the injection and removal of the nitrogen during flowing of the well (calculated with same method as above) indicate an impact to Mr. Kenny's wells is unlikely. However, without direct measurement of water levels (pressures) and chemical/isotopic measurements in both the CBM well and the water wells during the event, it is inconclusive as to whether or not Mr. Kenny's wells were impacted by nitrogen fracturing of 00/05-14-027-22 W4M.

Figure 1 Energy wells in the vicinity of the Signer water well.

Table 1 AEUB review of wells near the Signer residence.

Well Location	Spud	Surface	Total	Perforation Depths (mKb)	Fracture Depths (mKb) and	Comments
	date/FDD/On	Casing	Depth	and Dates	Dates	
	Production	(mKb)	(mKb)			
00/14-10-027-22W4 Production history : Perfs 1479 – 1481 & 1476– 1478, tested and abandoned. Perfs 1249-1252, on production 19 Jun 01 and perfs 559.5 -603 added July 02, and 461.5 – 464.5 & 451 – 455 added Aug 02. Packer installed at 459 Oct 02 to isolate water production from lower zones. CBM zones added in 07. Less than 1m3/d water production.	05 Mar 01 09 Mar 01 On prod. 19 Jun 01 & 25 Sep 07	182.0	1511.0	1479.0 - 1481.0 / 29 Mar 01 1476.0 - 1478.0 / 29 Mar 01 1249. 0 - 1252.0 / 11 Apr 01 559.5 - 603.0 / 6 Jul 02 461.5 - 464.5 / 28 Aug 02 451.0 - 455.0 / 28 Aug 02 All below on 16 Sep 07 401.4 - 401.9, 395.0 - 395.5 390.8 - 391.3, 349.3 - 349.8 326.0 - 327.0, 320.6 - 321.1 260.8 - 262.8, 259.3 - 259.8 249.9 - 250.4, 245.8 - 246.3 231.0 - 233.0, 229.7 - 230.2 220.7 - 221.2, 216.3 - 216.8 211.5 - 212.0, 210.0 - 211.0	1249.0 – 1252.0 / 1 May 01 559.5 – 603.0 / 2 Aug 02 Perfs between the depths of 210.0 – 401.9 were individually frac'd on 23 Sep 07	Bridge plug capped with cement at 1466.5 to 1474.5 (11 Apr 01) - abandoned lower zone .Also a bridge plug at 459.0 (11 Oct 02) to isolate lower zones. No lost circulation reported. Cement returns on surface and production casing. No wellbore issues evident. Upper perf at 632.90 MASL
00/15-10-027-22W4 (Directionally drilled well. Surface hole in 14-10 and bottom hole in 15-10.) Production history: 718-720 on production 19 Mar 05. CBM perfs on production 25 Sep 07. Water production less than 1m3/d	4 Jun 03 7 Jun 03 On prod. 19 Mar 05 & 25 Sep 07	135.0	1548.0	1498.0 - 1500.0 / 13 Aug 03 1414.0 - 1417.0 / 24 Oct 03 718.0 - 720.0 / 4 Dec 03 Following perfs - 16 Sep 07 740.2 - 741.2, 705.7 - 706.2 555.4 - 555.9, 404.4 - 404.9 399.4 - 400.4, 395.5 - 396.0 353.7 - 354.2, 328.9 - 329.9 232.0 - 323.5, 260.5 - 263.5 259.1 - 259.6, 257.3 - 257.8 239.2 - 239.7, 229.6 - 231.6 228.2 - 229.2, 225.4 - 225.9 219.0 - 219.5, 214.5 - 215.0 208.3 - 210.3	1498.0 – 1500.0/2 Oct 03 1414.0 – 1417.0/15 Nov 03 Perfs from 208.4 – 741.2 frac'd individually on 20 Sep 07	Lower zones abandoned w/ Bridge plugs capped w/ cement @ 1484 – 1492 on 23 Oct 03, and 1404 – 1412 on 5 Dec 03. No losses reported. Cement returns on surface and production casings. No wellbore issues evident. Upper perf at 634.4 MASL

Table 1 Continued.

Well Location	Spud date/FDD/On Production	Surface Casing (mKb)	Total Depth (mKb)	Perforation Depths (mKb) and Dates	Fracture Depths (mKb) and Dates	Comments
00/04-11-027-22W4	29 Oct 97 30 Oct 97 10 Jun 98	43.0	780.0	669.0 – 672.0 / 17 Nov 97 616.5 – 619 5	669.0 – 672.0 / 24 Nov 97	Lost circulation reported at 12 to 31 metres in overburden due to gravel. Lost circulation material (bentonite and lime) was pumped to regain circulation. Control regained at 43.0 m, and surface casing set. Cement returns on production and surface casings. Upper perf at 218.2 MASL
02/04-11-027-22W4	21 Jan 04 21 Jan 04 19 Nov 04	42.7	504.0	Following perfs on 22 Apr 04 Perfs from 190.5 to 373.5 190.5 - 191.5, 192.4 - 193.1 individually frac'd on 5 Jun 04 208.7 - 209.7, 212.1 - 214.1 248.1 - 251.1, 302.5 - 303.5 308.4 - 309.4, 332.3 - 333.3 334.9 - 335.9, 372.5 - 373.5		No lost circulation reported. Cement returns on surface and production casings. No apparent well bore issues. Upper perf at 644.3 MASL
00/07-11-027-22W4 Production history: Production from lower perfs on 03. Other perfs have not produced to date.	3 Dec 02 8 Dec 02 22 May 03	148.6	1286.0	1188.5 – 1191.5/16 Jan 03 636.0 – 639.0/20 Apr 04 604.0 – 607.0/ 8 Jun 04 Following perfs on 13 Apr 05 342.8 – 343.8, 337.0 – 338.0 299.4 – 300.4, 296.4 – 297.4 272.7 – 273.7, 211.9 – 214.9 188.0 – 189.0, 175.9 – 177.9	1188.5 – 1191.5/11 Feb 03 636.0 – 639.0/24 May 04 604.0 – 607.0/ 26 Jun 04 Perfs from 175.9 to 343.8 frac'd on 2 May 05	Lower zones abandoned with bridge plug capped with cement at 1172 – 1182 on 20 Apr 04, and a bridge plug at1137.3 to 1140.8 on 22 Jun 05. No lost circulation reported. Cement returns on surface and production casings. No apparent well bore issues. Upper perf at 622.6 MASL
00/05-14-027-22W4 Fluid level in well reached 80 mKB during shut-in prior to sampling upper perfs. There was a packer at 172.0 m in hole at the time. 4 m3 water reported recovered from well.	13 Oct 03 13 Oct 03 Not on production	85.0	467.0	Following perfs on 15 Feb 04 418.9 - 419.9, 415.5 - 416.5 374.3 - 375.3, 371.7 - 372.7 358.4 - 359.4, 354.5 - 355.5 347.8 - 348.8, 342.6 - 343.6 284.9 - 286.9, 283.5 - 284.5 259.3 - 260.3, 248.0 - 250.0 244.9 - 245.9, 238.6 - 239.6 234.6 - 235.6, 228.7 - 230.7 222.0 - 223.0, 220.1 0 221.1 186.1 - 187.1, 177.1 - 178.1 141.4 - 142.4, 133.0 - 134.0 131.7 - 132.7, 125.5 - 126.5	Perfs from 125.5 to 419.9 frac'd on 2 Mar 04	Cement squeezed top 4 perfs on 12 Jul 04: 141.4 – 142.4, 133.0 – 134.0 131.7 – 132.7, 125.5 – 126.5 Cement plug from 17.0 to 425.0 m on 10 Oct 04. Cement returns on surface and production casing. Cement top inside surface casing confirmed with log. No apparent wellbore issues. Upper perf at 743.0 MASL

4 SIGNER WATER WELL INFORMATION

4.1 Initiation of Well Complaint

The water well complaint by Ms. Signer was originally made to EnCana about a concern related to methane in her well. In September of 2004 EnCana's consultant, Hydrogeological Consultants Limited initiated an investigation and produced a report (Hydrogeological Consultants Limited 2004).

4.2 Well Design, Construction and Maintenance

The water well drilling report for the Signer Water Well, available through the AENV Groundwater Information Centre (GIC) (Well ID # 0299882), is included in Appendix B. The well was drilled and completed by Gerritsen Drilling on February 7, 2002. There is a clear lithology log that indicates that this well is completed in coal. The borehole was drilled and a 152 mm diameter PVC casing was inserted to 41.15 m and seated into the bedrock. After reaching competent bedrock and setting the casing, bentonite chips and cuttings were poured into the annulus between the borehole and the casing. This method of sealing is not preferred, as there is no way to ensure a proper seal the entire length of the annulus. As well, the water saturated, fine grained material encountered from 5.2 to 6.4 m in the borehole could have lead to bentonite bridging (sticking caused by water swelling the bentonite) at that point. It is not clear if the existing seal provides adequate protection against contamination of water from ground surface entering the well. Several water analyses (discussed below) did indicate coliform bacteria were present and this could indicate a poor seal in the upper part of the well. The hole was then drilled further to the total depth of the well which is approximately 56.08 m. A liner was installed from 37.8 to 56.1 m in the well to prevent loose material from the borehole wall entering the well. The liner was perforated by saw from 53.0 to 56.1 m. The casing extends to 0.68 m above ground surface. A cistern is used to provide storage because the well provides limited yield.

Notes in the AENV complaint file indicate that the well did not have regular shock chlorination. Total Coliform bacteria were too numerous to count (TNTC) in three separate analyses. E. Coli bacterial have been detected in this well. These bacterial results could indicate a poor well seal. No information on subsequent well maintenance is contained in the file, but the most recent sampling in June 2007 did not detect coliform bacteria. Bacterial analyses indicate that iron related bacteria (IRB) and sulphur reducing bacteria (SRB) are present in the well water.

4.3 Stratigraphy

A good quality lithology record is available for the Signer well through the AENV Groundwater Information Centre. A new AENV groundwater observation well network (GOWN) well (installed in March 2007) approximately 250 m to the north also provides detailed lithology information. A geologic cross section through the Signer well was constructed using lithology information from the Kenny well, the Signer well, a GOWN well and geophysical logs from the EnCana CBM wells 05-14-027-22 W4M, 15-10-027-22 W4M and 07-11-027-22 W4M (Figure 2). The contour interval on this map is 2 m and the colour shading visually denotes elevation.

Figure 2 Map showing location of cross-section. DEM image supplied by EnCana.

The cross-section (Figure 3) illustrates that the Signer well is completed in coal zones of the Upper Horseshoe Canyon Formation (Weaver coal member) with the groundwater bearing zone at a depth of about 54 m (747 MASL). From nearby energy borehole logs, this zone is likely the Weaver coal zone. The EnCana 07-11-027-22W4M, 04-11-027-22W4M and 15-10-027-22W4M wells have production casing perforations starting at 622.6, 644.3 and 634.4 MASL respectively, which indicates a vertical separation of at least 103 m between the water-bearing zone of the

Signer well and the upper perforations of the energy wells. The 05-14-027-22W4M well, located about 1.7 km north of the Signer well, has perforations starting at 743 MASL. This is likely the same coal zone as the Signer well (as discussed above in section 3). A saturated sand and gravely sand layer was encountered in the residential water wells and in the GOWN well at a depth of about 2 to 6.5 m. This gravely sand layer is a potential pathway for water from the ground surface that infiltrates into the shallow subsurface to enter water wells if an adequate surface casing seal is not in place in the water wells.

4.4 Hydrogeology

4.4.1 General Groundwater flow directions

Local and very shallow groundwater flow may be controlled by the unconfined sand and sandy gravel layer encountered at a depth of 2 to 5 m in several nearby water wells. The shallow flow is likely controlled by topography and flow directions are likely from the Signer well site to the Rosebud River to the north (Borneuf 1972). In the Signer well, the deeper confined groundwater flow within the upper Horseshoe Canyon bedrock is part of the regional groundwater flow system flow directed to the northeast (Bachu and Michael 2002).

4.4.2 Vertical Hydraulic Gradient

An estimation was made of the vertical hydraulic gradient between the coal zones of the Signer well and that of nearest EnCana CBM well with pressure data (02/14-02-027-22 W4M about 1.5 km to the south) using the following:

Depth of coal zone in Signer well = 747 MASL.

Depth of upper coal zone in EnCana CBM well 00/07-11-027-22W4M = 619 MASL.

The head of water in the Signer well = 794.8 MASL.

A shut-in pressure of 422.9 KPa was measured in the Garden Plains Coal member of EnCana CBM well 02/14-02-027-22W4M (equivalent to 43.2 m of water). Therefore the equivalent head of water in the CBM well = 662.2 MASL assuming density of 1000 kg/m³ (fresh water).

The vertical gradient is estimated from = $\Delta h/\Delta I$ = (794.8-662.2)/(747-619) = 1.0. This suggests a large downward vertical gradient. If these coal zones become connected, groundwater would flow down into the CBM well. The rate of flow however, is going to be controlled by the hydraulic conductivity along the flow path. For example, if a fracture connects a CBM well to an overlying aquifer, the amount of groundwater produced could be significant, but will controlled by the fracture aperture.

4.4.3 <u>Hydraulic Conductivity</u>

Two pumping tests have been performed on the Signer Well. A 138 minute pumping test followed by a 100 minute recovery test was done February 2, 2002 by Gerritsen Drilling. A second 83 minute pumping test was performed by AENV on June 4, 2007 as part of a sampling event. An analysis of the February 2, 2002 was done by Hydrogeological Consultants Ltd (2004). No analysis of the June 4, 2007 data was found in the AENV file. The aquifer test data was analysed by ARC for this report using AQTESOLV, Version 3.50 Professional, Aquifer Test Design and Analysis Computer Software (1996-2003 HydroSOLVE Inc.). This software provides analytical solutions for evaluating parameters in confined, unconfined, leaky, or fractured aquifer systems, and allows evaluation of the aquifer test data by visual curve matching to select the most appropriate interpretation to represent aquifer conditions at the site. The raw data and graphical solutions are included in Appendix C.

The Theis (1935) confined aquifer solution was used to solve the drawdown and recovery portions of the pumping tests. An average apparent transmissivity of 1.25×10^{-4} m²/min (0.18 m²/day) was calculated. This is similar to the value of 0.12 m²/day estimated in Hydrogeological Consultants Ltd report (2004). This value suggests that the aquifer has low to moderate transmissivity. No storativity value can be determined because it is not possible to calculate from water level measurements taken in a well that is being pumped. To calculate a storativity, water level measurements must be made in a non-pumping well in a well located a short distance from the pumping well. A storativity value of 0.005 can be estimated for this bedrock aquifer based on values reported in the literature (Freeze and Cherry 1979). The transmissivity and storativity can be used to estimate drawdown in water levels caused by pumping of the Signer well.

4.4.4 <u>Water levels and methane saturation</u>

Five static water levels from the Signer water well available over five years have been variable (Table 2). The maximum difference in water levels is 3.6 m which corresponds to a pressure difference of 0.35 Atm (5.1 PSI). A drop in pressure is expected to decrease the solubility of methane in the water and cause an increase in the amount of methane coming out of the water. This is similar to the case where pressure is decreased in a carbonated drink (by opening the top) and CO_2 bubbles out of solution. An estimation of the concentration of methane in water (in the Signer Well) at saturation can be done using the head (height) of water above the coal zone to calculate water pressure and then to use the Henry's Law equilibrium equation to relate water pressure to methane solubility:

Head of water above coal zone at the highest static water level = 48.2 m or 4.66 Atm

Head of water above coal zone at the lowest static water level = 44.6 m or 4.31 Atm

Henry's constant for methane = 1.4×10^{-3} Moles/Atm (at 25 °C or 298.15 °K)

A temperature correction needs to be done to the Henry's constant to account for the observed temperature of 285.65 °K (12.5 °C) in the Signer well:

Henry's constant for methane in water at 12.5 °C = 1.1×10^{-3} Moles/Atm

Therefore, based on this equation, the concentration of methane in water is calculated to be 5.13×10^{-3} Moles/kg of water at saturation for the highest static water level and 4.74×10^{-3} Moles/kg of water at saturation for the lowest static water level. This illustrates that with lower water levels or lower pressures, the solubility decreases and this could explain an increase in the amount of methane coming out of the water. However, it does not explain the source of the methane.

Date	Static Water Level (m TOC)					
Feb 7, 2002	6.22					
Nov 26, 2003	9.33					
Sept 22, 2004	6.32					
Sept 30, 2004	6.36					
June 4, 2007	5.75					

Table 2 Static water levels in the Signer well.

4.4.5 Potential for Methane Gas Migration

In order to estimate methane gas migration potential from an active CBM site to an overlying water supply aquifer, an assessment of the forces controlling the methane gas bubble migration is helpful. If an aquifer overlying a CBM zone was connected to the CBM zone through and induced fracture (from well stimulation) methane bubbles would tend to rise in the fracture due to buoyancy forces. Groundwater flow downward in the fracture would tend to counteract the buoyancy force and prevent the bubble from rising. Appendix D provides a discussion on how those forces are determined and presents simplified calculations (personal communication with Dr. J, Jones, PhD., University of Waterloo) that determine what kinds of flow conditions prevent methane gas bubble migration into an overlying water supply.

An example of the application of this approach for the case of an induced fracture connecting a CMB zone with an overlying aquifer (e.g. either in the geological medium or in a casing annulus) provides some estimates of groundwater flow in the fractures (under the observed gradients at the site) were compared to the terminal velocity (maximum velocity the bubble can reach given the density and viscosity of the fluids involved) of methane bubbles. For a 100 μ m fracture, the flow velocity in the aperture would stop a methane bubble of 245 μ m or less from rising into an overlying aquifer. In coal fracturing operations the intended fracture apertures are in the order of 1000 μ m (1 mm) (personal communication with Paul Smolarchuk, Canadian Spirit Energy). An estimation of a downward groundwater flow velocity for the hydraulic gradient in the area in a 1 mm fracture indicates that a bubble of 2.5 mm or less would be stopped from rising. This kind of assessment suggests that if an induced connection existed between the CBM well and the Signer water well, methane bubbles would not tend to rise in these smaller fracture expected from fracturing because of the downward groundwater flow based on the hydraulic gradient estimated for the local area.

4.5 Water and Gas Chemistry

This section presents the results of ARC's compilation, review and assessment of water and gas chemistry data from the AENV and AEUB files (Signer well complaint file and energy well data) and additional data from D35 water well testing in the area (collected under AEUB Directive 35). Data from D35 testing was provided by AENV and from EnCana's consultant (WorleyParsons Komex). The chemistry from one hundred and forty five (149) water well tests

from a radius of approximately 10 km from the Signer well have become available from the new D35 AENV database and are compared here with the Signer water well and the CBM wells. Of these new well results, 42 have free gas analyses and/or isotope geochemistry. An analysis of this new chemistry data is organized into major ion chemistry, gas chemistry and isotope geochemistry.

4.5.1 <u>Historical Major Ion and Bacteria Chemistry Prior to Complaint</u>

Two historical water quality analyses are available for the Signer water well prior to the initiation of the complaint (Table 3). Copies of the analyses are included in Appendix E. The November 26, 2003 and August 13, 2004 samples (analyzed by WSH Labs) have routine potability analyses with ion balances within 2.5%. This is an acceptable lab QA/QC. It is not possible for ARC to comment on the field QA/QC as this type of information was not available. Both analyses show the Signer well water quality values are greater than the aesthetic objectives (set by the Summary Guidelines for Canadian Drinking Water Quality set by Health Canada 2007) for total dissolved solids (TDS) and sodium with average values of 1115 and 467 mg/L, respectively. As these sodium concentrations exceed the 200 mg/L guideline there may be a concern for people on sodium reduced diets. In addition, the aesthetic objectives for chloride is exceeded in the November 26, 2003 analysis with a value of 269 mg/L as compared to 250 mg/L for the standard. The maximum acceptable concentration of total coliforms was exceeded in the November 26, 2003 and August 13, 2004 analyses, with concentrations too numerous to count (TNTC). More recent sampling of this well (since June 2006) showed no coliform bacteria.

4.5.2 Major Ions, Metals and Bacterial Chemistry

In addition to the historic water analysis from the Signer well, several additional water analyses were performed after the complaint (Table 3). Routine potability analyses were from AENV sampling and Hydrogeological Consultants Ltd (2004). These analyses have ion balances of 10% which is an acceptable value. The results indicate that the Signer well consistently exceeds the aesthetic objectives for total dissolved solids (TDS) and sodium with results in a similar range to that measured prior to the complaint. As well, the aesthetic objectives for chloride and iron have at times been exceeded.

Bacterial analyses show the presence of total coliform bacteria in exceedence of the maximum acceptable concentration on five different sampling events. The coliform bacteria were too numerous to count on several occasions. Current available detection methods do not allow for routine analysis of all micro-organisms that may be dangerous to human health. The presence of the Coliform group of bacteria is used an indicator for the potential presence of disease-producing bacteria that normally live in the intestine of warm-blooded animals (fecal matter).

Bacterial identification was performed by HydroQual Laboratories Limited on samples from the Signer water well and from the cistern (June 14, 2006). Bacteria identified in all samples include: Enterobacter, Bacillus, Escherichia coli, Chromobacterium, Psuedomonas and

Alcaligenes. In addition, other micro-organisms, such as amoebae, flagellates, ciliates and possible water fleas were observed in all samples. Copies of the analyses are included in Appendix E. Observations of a heavy pink "slime" in the well and cistern was noted in the Hydrogeological Consultants Ltd report (2004) and in AENV field notes and photographs. Both the well and cistern have bacterial problems that are indicative of water from ground surface leaking into the well.

It is likely that the source of these organisms is close to the Signer well because these organisms generally do not possess the ability to persist in groundwater. The fate of bacteria from surface water (and other components) used in drilling fluids has been investigated by Cullimore and Johnston (2005). Changes in solar radiation, temperature, redox conditions, salinity, flow patterns and mixing with other drilling fluid components can have a control on the survival of bacteria. Bacteria from surface water in drilling fluids have short-term (less than seven days) impacts in the immediate vicinity (within two metres) of the well but would normally be expected to die off or be integrated into the natural groundwater communities (Cullimore and Johnston 2005).

The major ion chemistry of the D35 water wells, the Signer well and the GOWN wells is presented on Figure 4. The water well major ion chemistry for the Signer wells is Na-HCO₃-Cl type water. This water chemistry is typical of water wells in the area. There is a strong positive correlation of two specific water types in the area, namely sodium-bicarbonate (Na-HCO₃) and sodium-bicarbonate-chloride (Na-HCO₃-Cl) type waters, with the presence of methane in the water (shown in Figure 4). The Signer water well results show this correlation. This correlation relates to the reducing conditions, found where methane occurs in coalbed zones, that likely result in the biochemical reduction of dissolved sulphate, resulting in decreased sulphate. Bicarbonate, on the other hand, likely tends to be enriched in the coals as a result of carbonate dissolution by oxygenated recharge water and by sulphate reduction methane production (fermentation). Calcium and magnesium tend to be reduced by inorganic precipitation of calcite due to reduced solubility in the presence of elevated bicarbonate (Van Voast 2003).

The major ion chemistry is presented on Schoeller plots (Figure 5 and 6). Most of the wells with methane have decreased calcium, magnesium and sulphate. Again, these wells show the water wells with methane tends to have sodium-bicarbonate (Na-HCO3) or sodium-bicarbonate-chloride (Na-HCO3-Cl) type waters. The Signer water well falls into this group.

Table 3 Summary of Chemical Analyses for the Signer Water Well

raiamotor	onto	Olgrici TTCII																						000110110000	
Date	dd/mm/aaaa	26/11/2003	13/08/2004	22/00/2004	30/00/2004	16/05/2006	14/06/2006	1//06/2006	14/06/2006	14/06/2006	14/06/2006	14/06/2006	02/11/2006	02/11/2006	02/11/2006	02/11/2006	02/11/2006	02/11/2006	22/02/2007	04/06/2007	04/06/2007	04/06/2007	26/06/2007	40	MAC
Time	hh/mm	20/11/2003	13/00/2004	22/03/2004	30/03/2004	12:30	11:00	11:30	11:45	14/00/2000	14/00/2000	14/00/2000	13:05	13:55	16:26	16:27	16:28	16:31	12:30	16:00	16:00	16:55	11:18	AO	WING
Location						Residence	Well	Cistern	Kitchen Tap	Well	Cistern 1	Cistern 2											Well		
Laboratory		WSHLabs	WSHLabs	Norwest	Norwest	ALS	ALS	ALS	ALS	HydroQual	HydroQual	HydroQual	ALS	ARC Veg	Maxxam	ARC Veg	Maxxam	ARC Veg	ALS	ALS	ARC Veg	UofC	ALS		
pH	units	8.15	8.12	8.38	8.42	8.4	8.5	8.5	8.5				8.4						7.8	8.5				6.5 - 8.5	
EC	µS/cm	1941	1946	1890	1930	1910	1890	1900	1910				1870						1930	1870					
TDS-calculated	mg/L	1149	1107	1070	1090	1090	1120	1130	1090				1120						1140	1150				500	
Total Alk. as CaCO3	mg/L	666	662	694	693	683	667	691	694				683						679	602					
Sodium	mg/L	472	465	437	440	434	481	491	451				469						486	514				200	
Potassium	mg/L	<0.5	2.3	1.2	0.9	1.1	1.1	1.2	1.2				1						1.8	1.1					
Calcium	mg/L	5.1	8.5	4.2	3.8	3.9	6	3.6	3.7				1.5						2.2	0.9					
Magnesium	mg/L	<0.1	0.00	0.3	0.3	0.4	0.5	0.4	1.2				0.4						0.3	<0.1					
Iron (total)	mg/L	0.034	0.06	0.01		0.039	0.239	0.023	0.033										1.06	0.02				0.3	
Manganasa	mg/L	-0.01		0.01	<0.01	0.002	<0.00	<0.00	0.12										0.011	0.001				0.05	
Manganese (total)	mg/L	<0.01	<0.01	<0.005	<0.05	<0.003	<0.013	<0.003	<0.02										0.012	0.003				0.05	
Chloride	mg/L	269	232	212	224	239	232	220	221				238						237	264				250	
Fluoride	ma/L	1.5	1.43	1.26	1.3																				1.5
Sulphate	ma/L	<0.6	<0.6	0.45	0.6	< 0.5	< 0.5	<0.5	<0.5				0.9						1.2	4.5				500	
Carbonate	mg/L	0	0	7	12	12	17	20	20				12						<5	15					
Bicarbonate	mg/L	812	807	831	820	809	780	801	805				809						828	704					
NO3 as N	mg/L	1.5	<0.2	<0.1	<0.1	< 0.05	< 0.05	< 0.05	<0.05				< 0.05						0.07	<0.5					10
NO2 as N	mg/L	<0.3	<0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05				< 0.05						< 0.05	<0.5					1
NO2+NO3 as N	mg/L	1.5	<0.2	<0.2	<0.2	<0.05	<0.05	<0.05	< 0.05				<0.07						<0.07	<0.7					10
Ion Balance %	%	99	105	97.0	96.0	93.8	107	108	99.1				101.0						105	115					
Bacteria		THE	-				00000					_							40						
Total Coliforms	ctu/100mL	INIC	INIC	<1	<1	<1	CGWC	<1	<1	Present	Present	Present	600						10						0
Fochorichia Coli	niph/100mL						2			Brocont	Brocont	Brocont								<1					0
Escherichia Coli	mpp/100ml	0	0	~ 1	<1	~ 1	2	<1	~ 1	Flesen	Flesen	Flesen	<1						<1	-1					0
S Reducing Bacteria	cfu/ml												200							<200					0
S Reducing Bacteria	MPN/ml					< 0.3	< 0.3	< 0.3	< 0.3				200							~200					
S Reducing Bacteria	Aggressivity			hiah	hiah																				
Iron Related Bacteria	cfu/mL					<10	<10	250	90				9000							9000					
Iron Related Bacteria	Aggressivity			high	high																				
Dissolved Hydrocarbons																									
Benzene	mg/L					<0.0005													<0.0005		<0.0001				0.005
Toluene	mg/L					<0.0005													<0.0005		<0.0001			0.024	
EtnyiBenzene	mg/L					<0.0005													<0.0005		<0.0001			0.0024	
F1(C6-C10) - BTEY	mg/L					<0.0005													<0.0015		<0.0001			0.3	
F2 (C10-C16)	mg/L																				<0.01				
E3(C16-C34)	mg/L																				<0.03				
F4(C34-C50)	ma/l																				<0.02				
()																									
Dissolved Gas Analysis																									
Nitrogen	mg/L													10.8							11.3				
Carbon Dioxide	mg/L													7.2							402				
Oxygen	mg/L																				4.34				
Methane	µg/L					27000								34100						110000	26200		110000		
Ethane	µg/L					<5								3.1							3.10				
Propane	µg/L																				<0.01				
n-Butane	µg/L																				<0.01				
-Dulane 812C Mothono	µg/L ∞ ppp																				<0.01				
013G Methane	/00 F D B																					*00.5			
Free Gas Analysis																									
Nitrogen	ppm														151500	264000	126300	98000			210000				
Carbon Dioxide	ppm														2100	2390	2200	1800			1940				
Oxygen	ppm														36200		28400				39600				
Methane	ppm														810200	739000	843100	932000			847000				
Ethane	ppm														<100	21.2	<100	13.4			28.80				
Propane	ppm														<100		<100	0.0308			<0.05				
n-Butane	ppm														<100		<100	0.0083			<0.05				
i-Butane	ppm														<100		<100	0.0154			<0.05				
õ13C CO2	% PDB														-15.4		-16.66					0.7			
õ13C Methane	% PDB														-65.66		-68.09					-66.9			
013C Ethane	% PDB														-40.62		-40.11					nd			
013C Propane	% PDB																					nd			
513C i-Butane	700 PUB %- PDP																					na			
GCDWO - Health Canada	300 PUB Guidelines for	Canadian Dr	inking Water (Juality (2007)																		na			
AO - Aesthetic objective MAC - Maximum acceptatind - not detected by gas c not analyzed TNTC - Too numerous to CGWC - Confluent Growth	SCDWQ - Health Canada Guidelines for Canadian Drinking Water Quality (2007) U0 - Aesthetic objective MAC - Maximum acceptable concentration rd - not detected by gas chromatography so not run for isotopes 																								
Bold font denotes exceed	dence of GCDW	, /Q limit																							

Figure 4. Piper plot of water chemistry from the Signer well, Surrounding D35 water wells and the GOWN wells.

Figure 5 Schoeller plot of water wells with methane present.

Figure 6 Schoeller plot of water wells with no methane.

4.5.3 Dissolved Organic Chemistry

An analysis for EPA volatile priority pollutants and extractable priority are available for the Signer well (Table 3 and Appendix E). All volatile and extractable organic compounds were below the analytical detection limit with the exception of one compound not expected to be related to CBM activities. This compound, 2-Methyl-2-Propanol (1 μ g/l), is an alcohol used as a solvent (Grant Prill, ARC, personal communication) and may have come from cleaning of the AENV sampling equipment prior to sampling the well. Three BTEX and two F1-F4 analyses were done on the Signer well (Table 3). All BTEX and F1234 analyses were below detection limit. No Canadian Drinking Water Guideline limits have been exceeded for EPA priority pollutants or CCME hydrocarbons.

Four dissolved methane analyses were available for the Signer well with concentrations ranging from 27,000 to 110,000 μ g/l. These concentrations are at or above the saturation and methane would be expected to exsolve from the water. One high precision dissolved gas analysis (method detection limit = 0.01 μ g/L) was performed on the Signer well (Table 3) with methane (34,100 μ g/l) and a small amount of ethane (3.1 μ g/l) detected. The methane concentration was above saturation in water and would be expected to exsolve. There is a risk that methane can form an explosive mixture with air.

4.5.4 <u>Atmospheric Elements and Hydrocarbon Gas Chemistry</u>

Several free gas analysis are available for the Signer well (Table 3). The samples appear to be free from atmospheric contamination (based on low oxygen and nitrogen values). The gas samples contain 739,000 to 932,000 ppm methane and 13.4 to 28.8 ppm ethane. There is a risk that methane can form an explosive mixture with air. C3 and higher gases were below the detection limit (e.g. 0.05 ppm in the June 4, 2007 analysis). In addition to the Signer well, 36 nearby water wells from the D35 database and 3 GOWN wells have gas chemistry. Methane and ethane concentration are similar to those measured in the Signer well. A more rigorous, statistical approach to differentiate gas characteristics is presented at the end of this section.

An analysis of hydrocarbon gas on November 2, 2006 (Appendix E) detected several hydrocarbon components. The analysis is indicative of contamination from conventional hydrocarbons (Grant Prill, ARC, personal communication). The source of hydrocarbons in this free gas sample is not clear. No corresponding sample was taken for the dissolved hydrocarbon components at the time. However, both dissolved gas and free gas samples from June 4, 2007 detected no higher order hydrocarbons (nothing other than methane and ethane).

To address the concern that the nitrogen fracturing could have affected the Signer water well, the nitrogen concentration of the free gas in the Signer well was compared to concentrations in D35 wells, the GOWN wells, several CBM wells and conventional gas wells. The Signer well analyses range from 9.8 to 26.4 % nitrogen. The cause of the variability is unknown but it could be due to the location that the sample was taken from (pressure or temperature differences

between the well, house tap or cistern), and possibly to sampling procedure variability between different sampling events or different field personnel. A histogram of the nitrogen gas content from D35 water wells (Figure 7) shows two groups. One group falls in a range of 5 to 30% nitrogen while the other group is greater than 50% nitrogen. The group with greater than 50% nitrogen tends also to have lower methane concentrations and may be indicative of atmospheric contamination in the sample. Nitrogen levels could also be higher due to another factor such as breathing wells (wells that introduce air during atmospheric pressure highs and expel air with depleted oxygen content during atmospheric pressure lows) which have been noted in Alberta (Hydrogeological Consultants Ltd 1999), or to aquifer connection to the atmosphere at some distant point from the well (such as an aquifer outcrop on a valley wall). Natural nitrogen concentrations in coal in the energy wells are less than 15%. The Signer well nitrogen analyses fall within the normal range observed for the D35 wells with no air contamination. And do not appear to contain additional nitrogen from fracturing activities

Figure 7 Histogram of nitrogen concentrations in water wells and energy wells.

4.5.5 <u>Stable Carbon Isotope Chemistry on Hydrocarbon Gas</u>

Stable carbon isotopes sometimes can be used to help in the identification of the origin of gas in water wells. Two carbon isotope analyses on hydrocarbon gas were available for the Signer well (Table 3). In addition to the Signer well, 27 nearby water wells from the D35 database and 3 GOWN wells have carbon isotope analyses on the hydrocarbon gases and on the carbon dioxide gas. Carbon isotope analyses were also available for the EnCana CBM wells located in 08-12-027-22 W4M, 03-14-027-22 W4M, 07-13-027-22 W4M, 06-24-027-22 W4M and 14-12-027-22 W4M. Carbon isotope analyses were also available for the EnCana conventional gas wells located in 08-12-027-22 W4M and 14-12-027-22 W4M.

Isotopic results from the Signer well (June 4, 2007) and the GOWN wells in Rosebud and Redland were performed by the Applied Geochemistry group at the University of Calgary using a gas chromatograph coupled to a Finnigan MAT delta plus XL mass spectrometer (3 kV). This analytical setup requires at least 500 ppm methane, 300 ppm ethane and 200 ppm propane in the injected gas to stay in the linear range of the mass spectrometer (Dr. Bernhard Mayer, personal communication). The reported δ^{13} C values have a precision of +-0.5 per mil for both free and dissolved gases (He helium headspace equilibration technique). The analytical technique used for gas isotope results of the D35 samples and an earlier Signer well sample (two samples from November 2, 2006) is not known.

Some of the energy wells results have questionable quality data based on a qualitative QA/QC assessment presented in Table 4. The GC analysis for 02/08-12-027-22W4M and 00/08-12-027-22W4M appears to be representative of CBM and conventional gas respectively, but the isotope values of the methane are not. It appears that the samples may have got mixed up and the CBM gas sample was labelled as the conventional gas sample and vice versa. The sample from 00/03-14-027-22W4M appears contaminated by air, based on the composition being predominantly nitrogen and oxygen, with hydrocarbons below the detection limit. These analyses were not used in the ARC evaluation.

The new deep GOWN (Groundwater Observation Well Network) well in Rosebud, completed in the Drumheller coals, is from a shallow (140 m) CBM zone in the area. This well has no water but does have flowing gas. Several of the CBM wells are representative of CBM gas compositions. However, deeper CBM well gas carbon isotopes are not well represented in the area due to the problems noted above. Additional data from CBM wells from Township 45, Ranges 20 and 21 was used to compare the Signer well carbon isotopes to typical deeper CBM well carbon isotopes.

Well Name	Туре	GC	Isotopes	Data Quality					
GOWN Rosebud #1	CBM	Yes	Yes	Acceptable					
SW-18-027-21W4M									
02/04-44-027-22W4M	CBM	Yes	No	Acceptable					
02/08-12-027-22W4M	CBM	Yes	Yes	Isotope results may be from 00/08-12					
				(lab error?)					
00/03-14-027-22W4M	CBM	Yes	Yes	Air contaminated sample					
00/05-14-027-22W4M	CBM	Yes	No	Acceptable					
00/06-24-027-22W4M	CBM	Yes	No	Acceptable					
00/14-10-027-22W4M	Conv.	Yes	No	Acceptable					
00/15-10-027-22W4M	Conv.	Yes	No	Acceptable					
02/04-11-027-22W4M	Conv.	Yes	No	Acceptable					
00/07-11-027-22W4M	Conv.	Yes	No	Acceptable					
00/08-12-027-22W4M	Conv.	Yes	Yes	Isotope results may be from 00/08-12					
				(lab error?)					
00/14-12-027-22W4M	Conv.	Yes	Yes	Acceptable					
00/07-13-027-22W4M	Conv.	Yes	No	Acceptable					

Table 4 Energy (and GOWN) well QA/QC data quality.

A histogram of the carbon isotope values of methane from the Signer water well, the surrounding D35 water wells, CBM wells and conventional gas is presented in Figure 8. The methane values for the Signer well generally fall within the peak of the distribution for methane values. A statistical analysis of the mean isotopic compositions is presented at the end of this section. From a visual observation of the plot, it is observed that the CBM wells have a less depleted (less negative) methane isotope signature, while the one conventional gas signature is even more enriched. The D35 wells and Signer well have methane isotope signatures that fall within the range of -60 to -80, typical of biogenic methane (Schoell 1980; Whiticar et al. 1986; Rice 1993).

Figure 8 Histogram of the carbon isotope values of methane in all water wells and Energy wells.

A histogram of the carbon isotope values of ethane from the D35 water wells, the GOWN well, CBM wells and conventional gas is presented in Figure 9. The Signer well, CBM wells and surrounding D35 wells all have ethane isotope signatures that fall within the same general range. The conventional gas well (Viking Formation) has a much less depleted ethane isotope signature.

Figure 9 Histogram of the carbon isotope values of ethane in all water wells and energy wells

A plot of the methane concentration versus the methane carbon isotope signature ($\delta^{13}C_{Methane}$) is presented on Figure 10. Below the line at -60 ‰ typically represents a biogenic (bacterial) origin for methane (Schoell 1980 and 1983; Whiticar et al 1986; Rice 1993). The CBM and conventional gas wells have a $\delta^{13}C_{Methane}$ values that are less enriched than the typical range of -60 to -80 ‰, typical of biogenic methane. This value represents a mixed thermogenic and biogenic origin. The water well data, including the Signer well, all have $\delta^{13}C_{Methane}$ values that are clearly biogenic.

Figure 10 Methane concentration versus δ^{13} C of methane.

A plot of the ethane concentration versus the ethane carbon isotope signature ($\delta^{13}C_{\text{Ethane}}$) is presented on Figure 11. Most of the water wells have ethane concentrations below the lab detection limit (which was high as 100 ppm for some analyses). The Signer well has 21.1 ppm ethane (average of 3 analyses), which is below the method detection limit to run carbon isotopic analysis of ethane at the University of Calgary and the University of Waterloo (personal communication with Dr. Bernhard Mayer, University of Calgary and Robert Drimmie, University of Waterloo). The method, including the detection limit, used to determine ethane isotopes in the two Maxxam (and University of Alberta) analyses for samples taken on November 2, 2006 is not stated. Ethane isotope results on such low concentration may not be accurate. Of the D35 wells with detectable ethane, concentrations are several times less than that observed in the CBM wells or the deep GOWN well in Rosebud suggesting a different source for the ethane or only a small proportion of mixing (discussed later). The $\delta^{13}C_{Ethane}$ values of the water wells, including the Signer well, are within the range of $\delta^{13}C_{Ethane}$ values observed in the CBM well and the GOWN well. The ethane concentration and isotopic signature of ethane from the conventional gas well is markedly different from the water wells and the CBM wells. A more rigorous statistical approach to mean isotope values with more detailed interpretations are presented at the end of this section.

Figure 11 Ethane concentration versus δ^{13} C of ethane.

A plot of the methane carbon isotope signature ($\delta^{13}C_{Methane}$) versus the ethane carbon isotope signature ($\delta^{13}C_{Ethane}$) is presented on Figure 12. The $\delta^{13}C_{Methane}$ values of the CBM wells, the deep GOWN well and the conventional gas well are less depleted than the water wells. The $\delta^{13}C_{Ethane}$ values of the CBM wells and the GOWN well are similar to the D35 water wells. The $\delta^{13}C_{Ethane}$ values of the Signer well more enriched than the D35 wells or the CBM wells and is very similar to the new deep GOWN well in Rosebud.

Figure 12 $\delta^{13}C$ Methane versus $\delta^{13}C$ Ethane.

A plot of the carbon isotopes of coexisting methane and CO_2 from water wells are presented on Figure 13. Lines of equal carbon isotope fractionation (α) between methane and CO_2 are shown. This line represents the isotopic difference between these coexisting pairs of carbon species (methane and carbon dioxide). Data above the α =1.055 line can be indicative of methane origination from the CO₂ reduction pathway (biogenic) while data below this line can be indicative of methane origination from the fermentation pathway (Whiticar et al. 1986). The data indicates that methane from the Signer well and the majority of D35 well originates from the microbial reduction of CO₂ (i.e. biogenic origin).

Figure 13 δ^{13} C Methane versus δ^{13} C CO₂. The α value is a line of equal fractionation between methane and CO₂.

Both the hydrocarbon gas composition and the isotopic signatures can be a result of mixing between different sources of gases (such as biogenic methane with thermogenic methane). These hypothetical mixing curves can be calculated using the equations of Jenden et al. (1993) shown on Figure 14. The y-axis of this plot is the ratio of methane to all other hydrocarbon gases.

For this mixing calculation three different end member gases were considered : the statistical average biogenic gas in the area (from the D35 wells), a gas with an isotopic signature similar to the Signer well, and typical CBM gas.

The first mixing scenario (curve 1) was the average biogenic gas found in the D35 water well ([Methane=437104 ppm], $\delta^{13}C_{methane}$ =-68.7 ‰) mixed with a typical CBM gas ([Methane=876700 ppm], $\delta^{13}C_{methane}$ =-55.7 ‰). The second scenario (curve 2) started with a methane concentration similar to the Signer well (834260 ppm) with a methane isotopic signature ($\delta^{13}C_{methane}$ =-68 ‰) chosen so the Signer well would fall on the curve, mixed with the CBM gas. The tick marks on the curves represent mixtures of CBM gas with the gas from water wells, ranging from 0% to 100%

The Signer well mixing curve 2 shows a possible 0.6% mix of the CBM member with a biogenic end-member (chosen to fall though the well). While this is possible, the gas composition and $\delta^{13}C_{methane}$ value of the Signer well is not statistically any different from the average D35 water well (discussed below).

A similar plot can be constructed for ethane. This plot is not shown as the Signer well had ethane concentrations below the method detection limit for isotopic analysis.

Figure 14 Mixing plot of δ^{13} C of methane versus the methane/C2+ ratio. Data for the bacterial and thermogenic fields are from Faber and Stahl 1984.

A statistical analysis was performed on gas concentration and gas carbon isotope data. The concentration of methane, ethane and propane along with the carbon isotope values of methane and ethane from water wells containing methane were compared to the Signer water well and the CBM wells (Table 5). Hydrocarbon gases were detected in 36 of 145 (25%) of the wells in the Rosebud and Redland area.

Student T-Tests were used to compare methane concentrations in the Signer well with the surrounding D35 water wells. T-Tests are based on a t-distribution, which is similar to a normal distribution, but is dependent upon the number of samples measured. There is no significant difference between the mean methane concentrations in the Signer well with that of the D35 water well (5% level of significance). This statistically validates the contention that the methane concentrations in the Signer wells

Ethane concentrations were detected by gas chromatography in 10 of 145 (7%) water wells tested. Of these ten wells, the average concentration was 619 ppm as compared to 3798 ppm in the CBM wells. These results indicate a different source for etjhane or a small mixing ratio. Ethane carbon isotopes were measured in 16 wells by mass spectrometry, a more sensitive technique than gas chromatography. Propane and butane were not detected (by gas chromatography) in any of the water wells as compared to 559 ppm and 351 respectively in the CBM wells. The propane and butane carbon isotopes were measured in two water wells but gas
concentrations were below the method detection limit and the isotopes results may not be accurate.

Student T-Tests were used to compare mean methane carbon isotope value in the Signer well with the surrounding D35 water wells and the CBM wells. There is no significant difference between the mean methane carbon isotope values in the Signer well with that of the D35 water well (5% level of significance). This statistically validates the observation that the carbon isotope value of the methane in the Signer water well is the same as the methane isotope signature of the surrounding D35 water wells.

There is a statistically significant difference between the mean methane carbon isotope values in the D35 wells with that of the CBM wells (5% level of significance). This statistically validates the observation that the carbon isotope values of the methane in the CBM wells is less depleted than the methane isotope signature of the surrounding water wells.

There is a statistically significant difference between the mean methane carbon isotope values in the Signer well with that of the CBM wells (5% level of significance). This statistically validates the observation that the carbon isotope values of the methane in the CBM wells is less depleted than the methane isotope signature of the Signer well.

Student T-Tests were used to compare mean ethane carbon isotope value in the D35 water wells and the CBM wells. There is no statistically significant difference between the mean ethane carbon isotope values in the D35 wells with that of the CBM wells (5% level of significance). This statistically validates the observation that the carbon isotope values of the ethane in the CBM wells are the same as the ethane isotope signatures of the surrounding water wells.

There is a statistically significant difference between the mean ethane carbon isotope values in the Signer well with that of the D35 wells (5% level of significance). This statistically validates the observation that the carbon isotope values of the ethane in the Signer well is less depleted than the ethane isotope signature of the D35 wells.

There is no statistically significant difference between the mean ethane carbon isotope values in the Signer well with that of the CBM wells (5% level of significance). This statistically validates the observation that the carbon isotope values of the ethane in the Signer well are similar to the ethane isotope signature of the CBM wells. This does not indicate the D35 and Signer water wells have been impacted by ethane from CBM wells. Some of the ethane carbon isotope analyses may have been performed on samples that had ethane concentrations below the method detection limit, so the values may be questionable. In addition, similarity between ethane isotope signatures would be expected as both the CBM wells and the D35 water wells are completed in the same formation (but different coal members) in the area.

Table 5. Statistical values and T-Tests of the gas and isotope data.

	D35 V	Vater Wells			
	[Methane]	$\delta^{13}C_{Methane}$	$\delta^{13}C_{Ethane}$		
	(ppm)	(‰)	(‰)		
n	45	30	16		
Min	440	-79.20	-47.00		
Max	1000000	-60.00	-40.94		
Mean	599077	-68.25	-44.00		
Std.	337965	4.78	1.73		

	Signer	Water Wells	
	[Methane]	$\delta^{13}C_{Methane}$	$\delta^{13}C_{Ethane}$
	(ppm)	(‰)	(‰)
n	5	3	2
Min	739000	-68.09	-40.62
Max	932000	-65.66	-40.11
Mean	834260	-66.88	-40.37
Std.	69726	1.22	0.36

-			
	CE	BM Wells	
	[Methane]	$\delta^{13}C_{Methane}$	$\delta^{13}C_{Ethane}$
	(ppm)	(‰)	(‰)
n	14	11	3
Min	702700	-63.96	-45.72
Max	979100	-56.44	-40.51
Mean	889200	-60.09	-43.33
Std.	113421	2.04	2.63

T-Test	T-Test	Degees of Freedom	5% level of significance
Mean [Methane]			
D 35 and Signer	-1.539	48	no significant difference
Mean $\delta^{13}C_{Methane}$			
D 35 and Signer	-0.488	31	no significant difference
Mean $\delta^{13}C_{Ethane}$			
D 35 and Signer	-2.892	16	significant difference
Mean [Methane]			
D 35 and CBM Wells	-3.141	57	significant difference
Mean $\delta^{13}C_{Methane}$			
D 35 and CBM Wells	-5.448	39	significant difference
Mean $\delta^{13}C_{Ethane}$			
D 35 and CBM Wells	-0.573	17	no significant difference
Mean [Methane]			
Signer and CBM Wells	-1.006	17	no significant difference
Mean $\delta^{13}C_{Methane}$			
Signer and CBM Wells	-5.405	12	significant difference
Mean $\delta^{13}C_{Ethane}$			
Signer and CBM Wells	1.505	3	no significant difference

5 SUMMARY AND CONCLUSIONS

Alberta Research Council's review of the AENV Signer complaint file and AEUB data, and independent review of additional data and aspects of the complaint, provides the following conclusions:

- The Signer water well is completed in the Upper Horseshoe Canyon Formation as are some of the upper perforations of the CBM wells. Local water wells appear to be predominantly producing water from the Carbon Thompson and Weaver coals of the Horseshoe Canyon Formation.
- In the Rosebud area, the deep GOWN well and CBM drilling and completions records indicate that the coals are not water saturated below the Weaver coal. Under natural conditions, flow between water saturated coals where water wells are completed and CBM coal zones is expected to be very limited.
- A local stress analysis indicates the most likely azimuth (orientation) of fractures and face cleats in the coal would be about 055° (Bachu and Michael 2002). No energy wells (within 2 km) line up on the 055° azimuth to the Signer well.
- Energy Wells in the vicinity (within 1.5 km) of the Signer well have no apparent drilling and construction issues that would contribute to methane or degradation of water quality in the Signer well.
- The CBM well 00/05-14-027-22 W4M, located about 1.7 km north of the Signer well, had perforations and fracturing in the same aquifer that the Signer well is completed. The connection between these wells has since been removed (cement squeezed) and it is unlikely that these short-lived perforations had any measurable effects on the Signer well.
- Records in the AENV well complaint file indicate the Signer well is not regularly shock chlorinated. Bacterial analyses show the presence of total coliform bacteria in exceedance of the maximum acceptable concentration on six different sampling events. The coliform bacteria were too numerous to count on three occasions. A pink microbial "slime" was noted in the well and cistern. In addition to several bacteria, amoebae, flagellates, ciliates and possible water fleas were observed in the well.
- The well and cistern have a severe bacterial/microbial problem that is likely indicative of leakage of water from ground surface entering the well. It is likely that the source of contamination is quite close to the Signer well, rather than from other sources such as drilling fluids that were surface-water sourced, because many of these organisms generally do not possess the ability to persist long in groundwater environment.
- An estimate of downward vertical gradient between the Signer well and the Horseshoe Canyon CBM zones is 1.0. This represents a large downward vertical gradient. If these two zones become connected, water would flow downwards towards the deeper CBM zone well rather than up into the Signer water well.
- A theoretical evaluation of the potential migration of methane as bubbles from the CBM well to the Signer well (through an induced fracture) suggests that the downward flow of groundwater in the fracture would stop the upward migration of methane bubbles.

- A 3.6 m fluctuation in static water level was observed in the Signer well. The cause of this decrease is unknown but possible causes include groundwater resource extraction by the Signer well or nearby users or from drought. This drop in water level, and corresponding drop in pressure on the coal zone, can be shown to contribute to the increase in amount of methane dissolved in the groundwater at saturation. This effect would be even greater during regular pumping of this well where the water level drops by up to 18 m.
- The water well major ion chemistry for the Signer wells is Na-HCO₃-Cl type water. The analyses show the Signer well consistently exceeds the aesthetic objectives for total dissolved solids (TDS) and sodium. As well, the aesthetic objective for chloride and iron are occasionally exceeded. This water chemistry is typical of water wells in the area.
- For all the D35 wells in the area sodium-bicarbonate (Na-HCO₃) and sodiumbicarbonate-chloride (Na-HCO₃-Cl) type waters are associated with the presence of methane in the water. The Signer water well chemistry is not unique. It, along with many other wells in the area, has Na-HCO₃-Cl type water.
- The methane carbon isotope values for the Signer well generally fall within the histogram distribution peak for methane values for all D35 wells in the area.
- The CBM wells have δ¹³C methane values that are less depleted than the typical range (-60 to -80 ‰) for biogenic methane. This value represents a mixed thermogenic and biogenic origin.
- The water well data, including the Signer well, all have δ^{13} C methane values that are clearly biogenic. This means the methane likely formed at a shallow depth.
- The ethane carbon isotope values for the CBM wells generally fall within the histogram distribution peak for ethane values for all water wells in the area.
- The δ¹³C ethane values of all the water wells are similar to the values of the CBM wells, but concentrations are lower (indicating a different origin or potential mixing, see next conclusion point).
- The hydrocarbon gas composition and isotopic values will be modified by mixing between different sources of gases. For example, a hypothetical mixing of 0.6 % CBM gas with a biogenic end-member could produce results similar to the Signer well. While gas mixing is possible, the gas composition and δ¹³C_{methane} value of the Signer well is not statistically any different from the average D35 water well in the area.
- Student T-Tests statistically validate the observation that the carbon isotope signature of the methane in the Signer water well is the same as the methane isotope signature of the surrounding D35 water wells.
- Student T-Tests statistically validate the observation that the carbon isotope values of the methane in the CBM wells is different than the methane isotope signature of the surrounding water wells and the Signer well.
- Student T-Tests statistically validate the observation that the carbon isotope value of the ethane in the CBM wells is the same as the ethane isotope signature of the surrounding D35 water wells and the Signer well. This does not indicate the D35 and Signer water wells have been impacted by ethane from CBM wells. Some of the ethane carbon isotope analyses may have been performed on samples that had ethane concentrations below the method detection limit, so the values may be questionable. In addition,

similarity between ethane isotope signatures would be expected as both the CBM wells and the D35 water wells are completed in the same formation (but different coal members) in the area.

Overall Conclusion

 Alberta Research Council's overall conclusion of the evidence from the review of the AENV and AEUB files, along with a new review and evaluation of addition data and aspects, is that energy development projects in the area most likely have not adversely affected Ms. Signer's water well.

6 CLOSURE

This report details a thorough review of the AENV well complaint file for Ms. Signer regarding Coal Bed Methane (CBM) and conventional gas activities undertaken by EnCana and the subsequent perceived decrease in water quality of the Signer well.

This work was carried out in accordance with accepted hydrogeological practices.

Respectfully submitted, Alberta Research Council Permit to Practice P03619

Alexander R. Blyth, Ph.D., P. Geol. Research Hydrogeologist

7 REFERENCES

- Bachu, S., 1999, Flow systems in the Alberta Basin: Patterns, types and driving mechanisms. Bull. Canadian Petroleum Geology, v.47, no.4, p.455-474.
- Bachu, A. and Michael, K., 2002. Hydrogeology and Stress Regime of the Upper Cretaceous-Tertiary Coal-Bearing Strata in Alberta. EUB/AGS Earth Sciences Report 2002-04.
- Bachu, S. and Underschultz, J.R., 1995. Large-scale underpressuring in the Mississippian-Cretaceous succession, southwestern Alberta basin. American Association of Petroleum Geologists Bulletin, v. 7, p. 989-1004.
- Beaton, A., Paňa, C., Chen, D., Wynn, D. and Langenberg, C.W., 2002. Coal and coalbedmethane potential of the upper Cretaceous – Tertiary strata, Alberta Plains. Alberta Energy and Utilities Board, Alberta Geological Survey, Earth Sciences Report 2002-06.
- Binda, P.L., 1991. The Battle Formation: a lacustrine episode in the late Maastrichtian of western Canada: In: Aspects of nonmarine Cretaceous geology, N.J. Mateer and P.J. Chen (eds.), China Ocean Press, p. 202-217.
- Borneuf, D., 1972. Hydrogeology of the Drumheller Area, Alberta. Research Council of Alberta, Report 72-1.
- Coleman, D., Risatti, J. and Schoell, M., 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochimica et Cosmochimica Acta, Vol. 45, p. 1033-1037.
- Cullimore, R. and Johnston, L., 2005. Potential biological impact on shallow aquifers from using surface water as a drilling fluid. Scientific opinion report prepared by Droycon Bioconcepts Inc. for EnCana, September 9, 2005.
- Decker, A.D., Klusman, R. and Horner, D.M., 1987. Geochemical techniques applied to the identification and disposal of connate coal water. Proceedings of the 1987 Coalbed Methane Symposium, Tuscaloosa, Alabama, p. 229-242.
- Demchuk, T.D. and L.V. Hills, 1991, A re-examination of the Paskapoo Formation in the central Alberta Plains: the designation of three new members; Bulletin of Canadian Petroleum Geology, v. 39, no. 3, p. 270–282.
- Faber, E. and Stahl, W., 1984. Geochemical surface exploration for hydrocarbons in North Sea. The American Association of Petroleum Geologists Bulletin, Vol. 68, No. 3, p. 363-386.
- Freeze, A.R. and Cherry, J.A., 1979. Groundwater. Prentice-Hall Inc., Englewood Cliffs, N.J. 604 p.
- Health Canada, 2007. Summary of guidelines for Canadian drinking water quality.
- Hitchon, B., 1969a, Fluid flow in the Western Canada Sedimentary Basin: 1. Effect of topography. Water Resources Research, vol. 5, no. 1, pp. 186-195.
- Hitchon, B., 1969b, Fluid flow in the Western Canada Sedimentary Basin: 2. Effect of geology. Water Resources Research, vol. 5, no. 2, pp. 460-469.
- Hydrogeological Consultants Ltd., 1999. Water wells that breathe. Report to the Canadian Groundwater Association. August 11, 1999.
- Hydrogeological Consultants Ltd., 2004. Redland Area 08-10-027-22 W4M Signer Domestic Water Well Investigation. Consulting report 04-512 to EnCana Corporation, November 2004.

- HydroSolve Inc. 1996-2003. AQTESOLV, Aquifer Test Design and Analysis computer software, Version 3.50 Professional.
- Jenden, P.D., Drazan, D.J. and Kaplan, I.R., 1993. Mixing of thermogenic natural gases in Northern Appalachian basin. The Americal Association of Petroleum Geologists Bulletin, V. 77, no. 6, pp. 980-998.
- Jerzykiewicz, T., 1997, Stratigraphic framework of the uppermost Cretaceous to Paleocene strata of the Alberta Basin; Geological Survey of Canada, Bulletin 510, 121 p.
- Macdonald, D.E., Ross, T.C., McCabe, P.J. and Bosman, A., 1987. An evaluation of the coal resources of the Belly River Group, to a depth of 400 m, in the Alberta Plains. Alberta Research Council, Open File Report 1987-8, 76 p.
- Mossop, G.D. and Shetsen, I. (compilers) 1994. Geological atlas of the Western Canada Sedimentary Basin. Calgary, Canadian Society of Petroleum Geologists and Alberta Research Council, 510 p.
- Parks, K.P. and Tóth, J., 1995. Field evidence for erosion-induced underpressuring in Upper Cretaceous and Tertiary strata, west central Alberta, Canada. Canadian Petroleum Geology Bulletin, v. 43, n. 3, p. 281-292.
- Rice, D.D., 1993. Composition and origins of coalbed gas. In: B.E. Law and D.D. Rice (eds.), Hydrocarbons from coal: AAPG Studies in Geology 38, p. 159-184.
- Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta, Vol. 44, p. 649-661.
- Schoell, M., 1983. Genetic characterization of natural gases. American Association of Petroleum Geologists Bulletin, Vol. 67, No. 12, p. 2225-2238.
- Sweet, A.R. and D.R. Braman, 1992, The K-T boundary and contiguous strata in western Canada: interactions between paleoenvironments and palynological assemblages; Cretaceous Research, v. 13, p. 31–79.
- Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524.
- Van Voast, W., 2003. Geochemical signature of formation water associated with coalbed methane. American Association of Petroleum Geologists Bulletin, Vo. 87, No. 4, p. 667-676.
- Whiticar, M.J., Faber, E. and Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation – Isotopic evidence. Geochimica et Cosmochimica Acta, Vol. 50, p. 693-709.

APPENDIX A

SUMMARY OF ENERGY WELL DRILLING AND COMPLETION DETAILS

Well info for Alberta Research Council request 20-Apr-2006

all wells within 1600m of La Well Head	Spud Date	Rig Release	Lost circulation	Surface Casing Depti	TD	Coment returns (surface casing)	Cement returns (prod casing)	Perf Count	Perf date	Perf top	Perf bottom	Frac Count	Frac Date	Frac Top	Frac Bottom	Frac fluid
100/07-11-027-22W4/00	07-Dec-02	09-Dec-02	(Y/N) N	(m) 144	1287	1.00	(m3)	11	13-Apr-05	342.8	(mKb) 343.8	2	24-May-04	(mKb) 636.0	(InKb) 639.0	NITRIFIED FOAM
									13-Apr-05 13-Apr-05	299.4	300.4 338.0		02-May-05	175.9	343,8	N2
									20-Apr-04	636.0	639.0					
									13-Apr-05	296.4	297.4					
									17-Jan-03	1188.5	1191.5					
									13-Apr-05	175.9	177.9					
					-				08-Jun-04 13-Apr-05	604.0 188.0	607.0 189.0	-				-
100/04-11-027-22W4/00	29-Det-97	30-Oct-97	N	20	771	0.7	· ·	2	17-Nov-97 27-Nov-97	669.0 616.5	672.0 619.5	1	24-Nov-97	669.0	672.0	N2
102/04-11-027-22W4/00	21-Jan-04	21-Jan-04	N	43	504	02	11	10	22-Apr-04 22-Apr-04	302.5 334.9	303 5 335 9	1	03-Jun-04	190.5	373.5	N2
									22-Apr-04	190.5	191 5					
									22-Apr-04 22-Apr-04	3/2.5	309.4					
									22-Apr-04	332.3	333.3					
									22-Apr-04	208.7	209.7					
									22-Apr-04 22-Apr-04	192.1 248.1	193.1 251.1					
100/14-02-027-22W4/00	28-Feb-95	03-Mar-95	N	45	756	0.02	2	2	29-Jul-95	615.0 664.0	618,0 668,0					
102/14-02-027-22\/4/00	07-Oct-03	07-Oct-03	N	43	472	0.2	1.5	13	11-Feb-04 11-Feb-04	331.1 305.6	332.1 307.5	1	27-Feb-04	162,9	372.7	N2
									11-Feb-04	302.1	303.1					
									11-Feb-04 11-Feb-04	214.3	217 3					
									11-Feb-04	333.3	334.3					
									11-Feb-04	193.6	201.4 196.6					
									11-Feb-04	254.2	255.2					
									11-Feb-04	162.9	163.9					
									11-Feb-04 11-Feb-04	190.8	191.8					
103/14-02-027-22W4/00	17-Aug-04	19-Aug-04	N	144	1326	0.8	6	9	17-Fab-05	615.0	618.0					
									17-Feb-05 26-Feb-05	613.5 543.0	614.5 544.0					
									25-Oct-04	1226.0	1229.0					
									09-Jan-05 03-Mar-05	671.5 501.0	676.0 502.0					
									16-Jan-05	646.0	650.0					
	-	-							25-Oct-04	1223.0	1226.0					
100/10-03-027-22W4/00	18-Jun-95	20-Jun-95	N	44	764	-0.7	- 1 -	2	29-Jul-95 29-Jul-95	680.0 673.0	683.0 678.0					
102/10-03-027-22W4/00	19-May-02	20-May-02	N	64	462	03	3	13	28-Jun-02	196.2	199.2					
									28-Jun-02	261 7	262.7					
									28-Jun-02 28-Jun-02	218.8	221.8					
									28-Jun-02	311.4	312.4					
									28-Jun-02 28-Jun-02	256.2 228.3	258.2 229.3					
									28-Jun-02	341.0	342.0					
									28-Jun-02	203.1	204.1					
									28-Jun-02	254.2	256.2					
100/16-02-027-22W4/00	14-Aug-04	16-Aug-04	N	143	1326	0	5	15	28-Mar-05	246.3	249.3	1	02-May-05	191.4	377 3	N2
									28-Mar-05	210 1	211 1 586.0					
									28-Mar-05	233.0	234.0					
									15-Sep-04 28-Mar-05	1223.5	1225.5					
									28-Mar-05	376.3	377 3					
									28-Mar-05 28-Mar-05	372.9	373.9					
									28-Mar-05	191.4	192.4					
									28-Mar-05	214.3	216 3					
									28-Mar-05 28-Mar-05	193.6 300.6	196.6 301.6					
102/16 02 027 22/6/4/00			N	4503	#81/6	attin.	4677.6	#61/5	28-Mar-05	205.8	205.8					
100/06-02-027-22W4/00	18-Aug-89	24-Aug-89	N	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			-				
102/06-02-027-22W4/00	27-Oct-03	07-Nov-03	N	150	1331		5	7	26-Apr-04 26-Feb-04	600.0 646.0	601 0 650 0					
									26-Feb-04	637.0	638.5					
									13-Jan-04	1221.5	1223.0					
									26-Feb-04	640.0 1225.0	643.0 1229.0					
103/05-02-027-22W4/00	14-May-05	25-May-05	N	69	754	1	2	16	30-Aug-05	311.1	312.1	1	22-Sep-05	191.5	654.9	NZ
									30-Aug-05	213.9	214.4					
									30-Aug-05	217.0	219.0					
									30-Aug-05 04-Jul-05	654.4	654.9 499.5					
									30-Aug-05	389.4	389.9					
									16-Jul-05 30-Aug-05	235.0 248.8	239.0 251.8					
									04-Jul-05	500.5	503.5					
									30-Aug-05 10-Jul-05	306.5 256.5	307.0					
									30-Aug-05	196.0	197.0					
									30-Aug-05 30-Aug-05	197.5	192.0					
									30-Aug-05	227.4	227.9					

Well info for Alberta Research Council request 20-Apr-2006

all wells within 1600m of La Well Head	Spud Date	Rig Release	Lost circulation	Surface Casing Dep	pth TD Cen	nent returns (surface casing	g) Cement returns (prod casing)	Perf Count	Perf date	Perf top	Perf bottom	Frac Count	Frac Date	Frac Top	Frac Bottom	Frac fluid
(/00 event sequence) 100/13-11-027-22/W4/00	16-Jun-03	18-Jun-03	(Y/N) N	(m) 140	(m) 1342	(m3)	(m3)	2	11-Aua-03	(mKb) 682.5	(mKb) 684.0			(mKb)	(mKb)	
100/16 11 007 0000000	00.44 00	08.1 00	N.	000	1460				17-Jul-03	1234.0	1236.0	-				
100/16-11-027-22/04/00	20-May-00	06-Jun-00	N.	200	1463	0.5		2	29-Jul-00 15-Jul-00	1211.0 1431.5	1214.0 1433.0					
100/15-10-027-22/04/00	04-Jun-03	07-Jun-03	N	135	1548	2	4	3	04-Dec-03 23-04-03	718.0	720.0					
									13-Aug-03	1498.0	1500.0					
100/04-12-027-22W4/00	26-Jul-04	30-Jul-04	N	142	1438	0	6	5	17-Feb-05 29-Oct-04	602 0 1314 6	603.0 1320.5					
									11-Feb-05	666.0	670.0					
								1.1.1	11-Feb-05 17-Feb-05	671.0 604.0	673.5					
100/05-12-027-22W4/00	20-Jul-98	21-Jul-95	N.	#N/A	751	#N/A	4	21	31-Jul-03	186.0	187.0	2	07-Sep-98	565.0	568.0	N2
									31-Jul-03	231.5	234.5		za-seb-ap	565.0	000.0	niz.
									31-Jul-03	366.0	368 0					
									31-Jul-03	199.0	202.0					
									31-Jul-03 31-Jul-03	376.0	377.0					
									31-Jul-03	363.0	364.0					
									31-Jul-03	208.5	209.5					
									31-Jul-03	293 0	295 0					
									31-Jul-03	360.5	361.5					
									31-Jul-03 30-Auro-98	372.0	373.0					
									31-Jul-03	238.0	239.0					
									31-Jul-03 31-Jul-03	190.0	192.0 197.0					
								-	31-Jul-03	214.0	215.0					
102/06-12-027-22W4/00	31-Jan-02	04-Feb-02	N	202	1464	1	0.5	3	23-Feb-02	1208.0	321.5					
									23-Feb-02	1210.0	1211.0					
100/08-12-027-22W4/00	07-Dec-02	09-Dec-02	N	132	1294	0.5	8	4	29-May-04	605.0	612.0	-		-		
									01-Feb-03	1192.5	1195.0					
									03-May-04	617.5	622.5					
102/08-12-027-22W4/00	22-Jan-04	22-Jan-04	N	43	503	92	.1	14	27-Apr-04	280.2	282.2	1	24-Jun-04	163,0	399,3	NZ.
									27-Apr-04	163.0	167.0					
									27-Apr-04	186.0	188.0					
									27-Apr-04	305.4	308.4					
									27-Apt-04 27-Apt-04	344.5	345.5 351.2					
									27-Apr-04	307.2	308.2					
									27-Apr-04 27-Apr-04	181.1	182.1					
									27-Apr-04	398.3	399.3					
									27-Apr-04	176.8	177.8					
100/14-12-027-22W4/00	26-Jun-03	29-Jun-03	N	159	1456	1	3	3	20-Sep-03	1426.0	1428.5					
									31-Jul-03	1426.5	1428.0	2				
100/04-13-027-22W4/00	05-Feb-05	08-Feb-05	N	162 #N/A	1467	2.	6	1	17-Feb-05	1209.0	1212.0	1	05.Sen.OF	0.0	0.0	N7
102/07-13-027-22W4/00	20-501-50 22-May-02	24-May-02	N	194	1482	0.5	3	2	15-Oct-02	1206.0	1208.0	-	na-geb-ap	0.0	0.0	142
100/12-13-027-22/04/00	17- bil-03	20, 101,03	N	140	1367		4		06-Jun-02	1438.0	1442.5	-				
100/15-13-027-22W4/00	18-Jun-03	21-Jun-03	N	162	1481	2	3	4	20-Sep-03	1216.0	1219.0					
									31-Jul-03	1459.5	1461.0					
			-	100					29-Aug-03	1404.5	1406.0					
100/03-14-027-22W4/00	06-Jul-05	06-Jul-05	N	66	746	0,5	2	20	27-Feb-06	378.0	379.0 239.8	2	14-Aug-05	621 5	645 0 857 6	N2 N2
									27-Feb-06	201.4	202.0				just is	
									27-Feb-06 24-Jul-05	508.7 644.0	509.7					
									27-Feb-06	373.1	374.1					
									27-Feb-06	248.5 324.3	325.3					
									27-Feb-06	301.9	302.9					
									24-Jul-05	621.5	623.5					
									27-Feb-06 27-Eeb-06	367.9	368.9					
									27-Feb-06	204.5	205.5					
									25-Sep-05 27-Feb-06	223.0	225 0					
									27-Feb-06	207.5	208.5					
									27-Feb-06 27-Feb-06	205.7	206.7					
100 00 11 00				1	444.074	100.00			04-Sep-05	416.0	418.0	-	_			
102/03-14-027-22W4/00 100/08-14-027-22W4/00	10-Jun-98	26-Jul-98	N.	#N/A #N/A	#N/A 759	WN/A	#N/A	#N/A	#N/A 05-Sep-98	569.0	572.0	-		_		
100/01-24-027-22W4/00	27-Jul-98	28-Jul-98	N	#N/A	762	#N/A	1	1	21-Nov-98	430.0	433.0	1	26-Nov-98	430.0	433.0	N2
100/11-07-027-21W4/00	04-Jun-94	14-Jun-94	N	308	1501	#N/A	#N/A	5	27-Jun-94 15-Jul-94	1387.5	1389	3	05-Jul-94 10-Jul-94	1210.0	1212.0	
									27-Jun-1994	1388.5	1389		17-Jul-94	654.0	659.0	
									28-Jun-94	1210	1212		-			
100/07-18-027-21W4/00	16-Aug-1974	25-Aug-1974	N	151	632	#N/A	#N/A	2	18-Jun-97	591.9	594.4					

APPENDIX B WATER WELL DRILLING REPORTS

	Water	Well Drilling	R۵	nort	Well I.D.: Map Verified:))299882 Not Verifie	Ч
The data contained	in this report	is supplied by the Driller. The	he prov	vince disclaims responsibility	Date Report	,		e S
Alberta		for its accuracy.			Received:	- 1	mporial	5
1 Contractor & Well Owner In	formation						препа	
Company Name:	Tormation		Drillin	a Company Approval No	2. Well LOC		Rae W	estof
GERRITSEN DRILLING			11813	35	LSD	, up	rigo m	M
Mailing Address:	City or Town		Posta	I Code:	SE 10	027	22	4
BOX 187 WellOwner's Name:	Well Location	D ALBERTA CANADA	10J 2	RU	0 FT from	arter S	Bour	ndarv
SIGNER, DEBBIE					0 FT from	W	Bour	ndarý
P.O. Box Number:	Mailing Addr 916 EAST C	ess: HESTERMERE DR,	Posta T1X 1	Il Code: IA8	Lot Bl	ock	Plan	
City: CHESTERMERE	Province:		Count	try:	Well Elev: FT	How Not	Obtain: Obtain	
3. Drilling Information			0/1		6. Well Yiel	d		
Type of Work: New Well				Proposed well use:	Test Date		Start Time	:
Reclaimed Well	Mataria			Domestic	(yyyy/mm/dd):		11.00 AM	
Date Reclaimed: Method of Drilling: Rotary	Materia	ais Used: Unknown		Requirements/day	Test Method: F	'ump	11.00 AIVI	
Flowing Well: No	Rate: 0	Gallons		300 Gallons	Non pumping	2	20.407 FT	
Gas Present: No	Oil Pre	sent: No			static level:		1.66	
4. Formation Log		5. Well Completion			removal:	(Gallons/Mi	in
Jeptn from		Date Started(yyyy/mm/dd) 2002/02/05): D 20	ate Completed(yyyy/mm/dd): 002/02/07	Depth of pump		184.7 FT	
ground Lithology Descr	iption	Well Depth: 184 FT	B	orehole Diameter: 0 Inches	intake:			
level (feet)		Casing Type: Plastic	Li	iner Type: Plastic	end of	C	50.9 F I	
17 I an I III 21 Brown Fine Grained Gravel		Size OD: 6 Inches	S S	ize OD: 4.5 Inches	pumping:			
42 Blue Till & Clay		vvali Thickness. 0.36 inch	es w	Vali Thickness: 0.237 inches	Distance from to	op of 2	27 Inches	
123 Blue Till & Rocks		Bottom at: 135 FT	F	ор: 124 FT Бошотт: 184 Т	Depth To	water le	vel (feet)	
126 Blue Clay		Perforations	P	erforations Size	Ela	apsed Tir	ne	
177 Blue Shale		from: 174 FT to: 184 FT	0.	.187 Inches x 3 Inches	Drawdown M	linutes:S	ec Recov	very
184 Dark Gray Shale		from: 0 FT to: 0 FT	0	Inches x 0 Inches	20.407	2:00	74.24	40 85
		Perforated by: Saw	0	Inches X 0 Inches	24.344	4:00	69.78	83
		Seal: Driven & Bentonite			24.475	6:00	67.8	88
		from: 0 FT	to	o: 135 FT	22.31	8:00	66.10	09
		Seal: Unknown from: 0 FT	to). 0 ET	34,186	12:00	62.8	50 61
		Seal: Benseal			37.664	14:00	61.3	52
		from: 0 FT	to	: 0 FT	40.322	16:00	59.9	74
		from: 0 FT to: 0 FT	S	creen ID: 0 Inches	42.716	18:00	58.62	29
		Screen Type: Unknown	S	creen ID: 0 Inches	45.013	20:00	56.20	o∠ 01
		from: 0 FT to: 0 FT	S	lot Size: 0 Inches	49.114	24:00	55.08	85
		Screen Installation Method	d: Unkr	nown	50.984	26:00	54.03	35
		Top: Unknown	В	ottom: Unknown	52.723	28:00	53.0	51 1
		Pack: Unknown			55.971	32:00	51.2	14
		Grain Size:	A	mount: Unknown	57.448	34:00	50.3	61
		Retained on Files:			58.727	36:00	49.5	41
		Additional Test and/or Pur	mp Dat	a	<u>59.941</u> 61.056	38:00	48.7	86 64
		Chemistries taken By Drill	er: No	agumente Lleidi 2	62.238	42:00	47.3	75
		Pitless Adapter Type:	D		63.32	44:00	46.7	19
		Drop Pipe Type:			64.239	46:00	46.09	96
		Length: FT	D	iameter: Inches	65.289 Total Drawdow	48:00 n: 60 69(45.50 3 FT	05
		DRILLER REPORTS DIS	TANCE	FROM TOP OF CASING	If water remova	al was les	s than 2 h	۱r
		TO GROUND LEVEL: 27"			duration, reaso	n why:		
		Z Oomtraata O di			Recommended	l pumping	g rate: 1.5	8
		7. Contractor Certif	icatio		Galions/IVIIn Recommended	l pump ir	take: 183	7 FT
		Certification No.:	1		Type Pump Ins	talled		
		This well was constructed	in acco	ordance with the Water Well	Pump Type:			
		Financement Act All info	mation	mental Protection &	H.P.:			
		Signature		Yr Mo Day	Any further pur	nptest inf	formation?	No
				-)	e .			

Report 1 Pump Test 1 page1 page2 page3

A	Nator	Well Drilling	Reno	rt	Well I.D.: Map Verified:		0299882 Not Verified
The data contained i	n this report	is supplied by the Driller. Th		disclaims responsibility	Date Report		2002/05/06
Alberta		for its accuracy.		discialitis responsibility	Received:		2002/05/06
Environment		-			Ivieasurement	3:	Imperial
1. Contractor & Well Owner Inf	ormation				2. Well Loc	ation	Dava Marada (
GERRITSEN DRILLING			118135	mpany Approval No.:	LSD	Twp	Rge Westor M
Mailing Address:	City or Town		Postal Co	de:	SE 10	027	22 4
BOX 187	ROCKYFOR	D ALBERTA CANADA	T0J 2R0		Location in Qu	arter	Boundary
SIGNER, DEBBIE		ridentiller.			0 FT from	Ŵ	Boundary
P.O. Box Number:	Mailing Addr 916 EAST C	ess: HESTERMERE DR,	Postal Coo T1X 1A8	de:	Lot Bl	ock	Plan
City: CHESTERMERE	Province: AB		Country: CA		Well Elev: FT	Hov Not	v Obtain: Obtain
3. Drilling Information					6. Well Yiel	d	
Type of Work: New Well				Proposed well use:	Test Date		Start Time:
Reclaimed Well	Motoria			Domestic	(yyyy/mm/dd):		11:00 AM
Method of Drilling: Rotary	wateria			Requirements/day	Test Method: F	oump	11.00 AW
Flowing Well: No	Rate: 0	Gallons		300 Gallons	Non pumping		20.407 FT
Gas Present: No	Oil Pre	sent: No		1	static level:		1 66
4. Formation Log		5. Well Completion	_		removal:		Gallons/Min
Depth from		Date Started(yyyy/mm/dd)	: Date (Completed(yyyy/mm/dd):	Depth of pump	1	184.7 FT
ground Lithology Descrip	otion	Well Depth: 184 FT	Boreh	ole Diameter: 0 Inches	intake:		
level (feet)		Casing Type: Plastic	Liner	Type: Plastic	Water level at		80.9 F I
		Size OD: 6 Inches	Size C	D: 4.5 Inches	pumping:		
		Wall Thickness: 0.38 Inche	es Wall I	hickness: 0.237 Inches	Distance from	top of	27 Inches
		Bottom at: 135 FT	Тор: 1 ЕТ	24 FT Bottom: 184	casing to groui	<u>id level:</u>	aval (faat)
		Porforations	Porfor	atione Size:	El	apsed Ti	me
		from: 174 FT to: 184 FT	0.187	Inches x 3 Inches	Drawdown N	/inutes:S	Sec Recovery
		from: 0 FT to: 0 FT	0 Inch	es x 0 Inches	66.109	50:00	44.948
		from: 0 FT to: 0 FT	0 Inch	es x 0 Inches	67.782	54:00	43.898
		Seal: Driven & Bentonite			68.537	56:00	43.406
		from: 0 FT	to: 135	5 FT	69.258	58:00	42.946
		Seal: Unknown	to: 0 E	т	69.948	60:00	42.52
		Seal: Benseal	10.01	1	71.358	64:00	41.699
		from: 0 FT	to: 0 F	Т	71.982	66:00	41.306
		Screen Type: Unknown	Screel	n ID: 0 Inches	72.638	68:00	40.912
		Screen Type: Unknown	Scree	n ID: 0 Inches	73.163	70:00	40.584
		from: 0 FT to: 0 FT	Slot S	ize: 0 Inches	74.212	74:00	39.928
		Screen Installation Method	d: Unknown	1	74.836	76:00	39.6
		riungs Top: Unknown	Botton	n: Unknown	75.262	78:00	39.304
		Pack: Unknown	_ 3.00		76.05	82.00	39.009
		Grain Size:	Amou	nt: Unknown	76.476	84:00	38.484
		Retained on Files:			76.87	86:00	38.222
		Additional Test and/or Pur	np Data		77.264	88:00	37.992
		Chemistries taken By Drille	er: No	aanta Hald: 2	77.953	92:00	37.533
		Pitless Adapter Type	Docun		78.281	94:00	37.303
		Drop Pipe Type:			78.609	96:00	37.106
		Length: FT	Diame	eter: Inches	78.871 Total Drawdow	98:00	36.909 6 FT
		DRILLER REPORTS DIST	TANCE FR	OM TOP OF CASING	If water remova	al was le	ss than 2 hr
		TO GROUND LEVEL: 27"			duration, reaso	on why:	
		7 Contractor Cortifi	ication		Recommended Gallons/Min	1 pumpin	g rate: 1.58
		Driller's Name:	UNKN	OWN DRILLER	Recommended	l pump i	ntake: 183.7 FT
		Certification No.:	1		Type Pump Ins	stalled	
		This well was constructed	in accordar	nce with the Water Well	Pump Type: Pump Model		
		Enhancement Act. All info	rmation in t	his report is true.	H.P.:		
		Signature	-	· Yr Mo Day	Any further pu	nptest in	formation? No

	Watar	Wall Drilling	Dono	r4	Well I.D.:	0299882
	vvaler		керо	í L	Map Verified: Date Report	Not Verified
Alberta	a in this report	for its accuracy.	ne province	discialms responsibility	Received:	2002/05/06
Environment		tor no doodraby.			Measurements	s: <u>Imperial</u>
1. Contractor & Well Owner I	nformation				2. Well Loc	ation
Company Name:			Drilling Cor	mpany Approval No.:	1/4 or Sec	Twp Rge Westo
Mailing Address:	City or Town		Postal Cod	e.	SE 10	027 22 4
BOX 187	ROCKYFOR	D ALBERTA CANADA	T0J 2R0		Location in Qu	arter
WellOwner's Name:	Well Locatio	n Identifier:			0 FT from	S Boundary
P O Box Number	Mailing Addr	P665.	Postal Cod	<u>ه</u> .	lot B	lock Plan
	916 EAST C	HESTERMERE DR,	T1X 1A8			
City:	Province:		Country:		Well Elev:	How Obtain:
CHESTERMERE	AB		CA			
J. Drilling information				Proposed well use:	Test Date	Start Time:
Reclaimed Well				Domestic	(yyyy/mm/dd):	
Date Reclaimed:	Materia	als Used: Unknown		Anticipated Water	2002/02/07	11:00 AM
Method of Drilling: Rotary	Rate: (Sallons		300 Gallons	Non pumping	20.407 FT
Gas Present: No	Oil Pre	sent: No			static level:	
4. Formation Log		5. Well Completion			Rate of water	1.66 College/Min
Depth		Date Started(yyyy/mm/dd)	: Date C	completed(yyyy/mm/dd):	Depth of pump) 184.7 FT
dround Lithology Desc	ription	2002/02/05 Well Depth: 184 FT	2002/0 Borebo	2/07 Na Diameter: 0 Inches	intake:	-
level (feet)		Casing Type: Plastic	Liner T	ype: Plastic	Water level at	80.9 FT
		Size OD: 6 Inches	Size O	D: 4.5 Inches	pumping:	
		Wall Thickness: 0.38 Inche	es Wall Ti	hickness: 0.237 Inches	Distance from	top of 27 Inches
		Bottom at: 135 FT	Top: 12	24 FT Bottom: 184	casing to groun	nd level:
		Porforations	Porfor	tione Sizo:	El	apsed Time
		from: 174 FT to: 184 FT	0.187 l	nches x 3 Inches	Drawdown N	Ainutes:Sec Recovery
		from: 0 FT to: 0 FT	0 Inche	es x 0 Inches	79.232	100:00 36.712
		Perforated by: Saw	0 Inche	es x u inches	79.692	104:00
		Seal: Driven & Bentonite			79.987	106:00
		from: 0 FT	to: 135	FT	80.151	108:00
		from: 0 FT	to: 0 F	г	80.512	112:00
		Seal: Benseal			80.643	114:00
		from: 0 FT	to: 0 F	T ID: 0 lashas	80.676	116:00
		from: 0 FT to: 0 FT	Slot Siz	ze: 0 Inches	80.577	118:00
		Screen Type: Unknown	Screen	ID: 0 Inches	80.413	122:00
		from: 0 FT to: 0 FT	Slot Siz	ze: 0 Inches	80.348	124:00
		Fittings			80.249	126:00
		Top: Unknown	Bottom	n: Unknown	80.249	130:00
		Pack: Unknown	Amoun	t: Unknown	80.38	132:00
		Geophysical Log Taken:	Amour		80.61	134:00
		Retained on Files:			80.807	136:00
		Additional Test and/or Pur	np Data		Total Drawdow	vn: 60.696 FT
		Held: 0	Docum	ents Held: 3	If water remova	al was less than 2 hr
		Pitless Adapter Type:			duration, reasc	on why:
		Drop Pipe Type:	Diamet	ter: Inches		
		Comments:	Diamo		Decementaria	d autor in a notes 4 50
		DRILLER REPORTS DIST	TANCE FRO	OM TOP OF CASING	Gallons/Min	a pumping rate: 1.58
		I O GROUND LEVEL: 27"			Recommended	d pump intake: 183.7 F
					Type Pump Ins	stalled
					Pump Type: Pump Model	
		7. Contractor Certifi	ication		H.P.:	
		Driller's Name:	UNKN	OWN DRILLER	Any further pur	mptest information? No
1		Certification No.:	1		1	
		regulation of the Alberta E	nvironmenta	al Protection &	1	
		Enhancement Act. All info	rmation in th	nis report is true.		
		Signature		Yr Mo Day	<u> </u>	

APPENDIX C PUMPING TEST GRAPHICAL SOLUTION

APPENDIX D

ASSESSMENT OF METHANE GAS MIGRATION POTENTIAL

Assessment of the forces controlling the methane gas bubble migration (personal communication with Dr. Jon Jones, PhD., University of Waterloo).

Buoyancy Force:

Buoyancy is the upward force exerted on an object produced by the surrounding fluid in which it is fully or partially immersed due to the pressure difference of the fluid between the top and the bottom of the object. Buoyancy is the force that gives the wings on airplanes the lift required for them to fly.

The net upward buoyancy force is equal to the magnitude of the weight of the fluid displaced by the object.

In simpler terms: Suppose you put a rubber ball in a beaker of water. One of three things will happen:

1) If the weight of the rubber ball equals the weight of the volume of water it displaces: the ball will remain stationary

2) If the weight of the ball is less than the weight of the volume of water it displaces: the ball will begin to float upwards until it breaks through the water surface and will continue to rise until the weight of the volume of water displaced equals the weight of the rubber ball. This is why ice bergs float. A cubic meter of iceberg weighs less than a cubic meter of ocean water.

3) If the weight of the ball is greater than the weight of the volume of water it displaces: the rubber ball will sink to the bottom of the beaker.

Weight Force (In Terms of Methane Gas and Water):

One cubic metre of methane gas under 1 atmosphere of pressure at 15° C has a mass of ~ 0.68 kg. One cubic metre of water under the same conditions has a mass of ~ 1000 kg. So if we placed a bubble of methane gas in our beaker, it would always float upwards because the mass of the methane is much less than the mass of the water it displaces.

Comparison of Forces:

Looking at the forces acting on the bubble of methane gas:

The net force pulling the methane gas bubble upwards is: Fb - Wm

Where

Fb = Buoyant force [MLT-2]

Wm = Weight of the bubble [MLT-2]

We have established that the weight of the methane gas bubble is much less than the buoyant force (which is equal to the weight of the water that the bubble displaces). Therefore, the gas bubble will migrate upwards at some velocity.

If the velocity at which the methane gas bubble is rising were to be counteracted by water flowing downwards at the same velocity, then the bubble would remain stationary. If the water velocity were increased, the bubble would be pushed downward. Conversely, if the water velocity were decreased, the bubble would again begin to move upward, albeit at a slower rate.

The velocity at which a gas bubble migrates upward in a column of water is a function of the size of the bubble, i.e. the larger the bubble, the larger the upward velocity due to the increase in the net upward buoyant force. Also note that, as the gas bubble migrates upwards, it will be hindered by friction exerted on the bubble due to the viscosity of the fluid it is rising through.

Calculation Results:

Given the velocity that a gas bubble migrates upward in a column of water, it is simply a matter of determining if there is sufficient downward water velocity to counteract the upward migration of the bubble.

Radius of gas bubble (m)	Terminal upward velocity (m/s)
1.0 x 10 ⁻⁶	2.18 x 10 ⁻⁶
1.0 x 10 ⁻⁵	2.18 x 10 ⁻⁴
1.0 x 10 ⁻⁴	2.18 x 10 ⁻²
1.0 x 10 ⁻³	2.18 x 10 ⁰

Note: The upward velocities values listed represent theoretical maximum values. There are a number of factors that can affect these values.

The three most likely scenarios for the migration of the gas bubbles in natural systems would be through fractures, porous media and through cylindrical conduits like boreholes. The formulae for calculating the water velocities in these openings can be found in any standard hydrogeology textbook. Naturally, the site-specific conditions (and corresponding hydrological parameters) will dictate which particular formula (or formulae) is used.

Partial List of Mitigating Factors Affecting Upward Gas Migration

1. Tortuosity: Except for the case of upward migration through a borehole, the bubble will have to take a circuitous path in its upward migration as it manoeuvres through interconnected pore throats or fracture networks. As a result, the upward migration of the gas will be hindered.

2. Relative Size of the Gas Bubble to Pore Throat, Borehole or Fracture Aperture it is Flowing Through: If the diameter of the bubble is of the same order as the opening it is flowing through, there will be additional frictional forces slowing down the upward migration of the gas. The velocity values listed above assume that these forces are negligible.

3. Gas Entry Pressure: For the case of gas migration through fracture apertures or pore throats that are smaller than the diameter of the gas bubble, sufficient upward buoyant force is required for the bubble to exceed the gas entry pressure. All other factors being constant, a single gas bubble whose initial buoyant force is insufficient to overcome the gas entry pressure will remain trapped. However, the usual case is a large number of gas bubbles migrating simultaneously.

As the gas consolidates at entrapment sites, the buoyancy force will increase and eventually upward migration will resume.

4. Bubble Volume as a Function of Pressure: As the gas bubble migrates upward, the column of fluid exerting pressure on the bubble decreases. As a result, the bubble increases in size, thereby generating greater upward velocity due to an increase in the buoyant force. A quantitative expression relating the dynamics between bubble expansion and while moving upward and the accompanying increase in velocity are very difficult to obtain. For the velocities listed above, it was assumed that the size of the bubble remains constant. Whereas the first three mitigating factors in this list would tend to decrease the rate of upward gas migration, this factor would increase it.

5. Any geochemical processes that would make the bubble lose mass during migration (and thereby reduce its volume and decrease its upward velocity). However, it is very likely that this factor would be negligible in most instances.

APPENDIX E

CHEMICAL ANALYSES

Signer Domestic Water Well Chemical Analysis (26 Nov 03)

WSHLab	95 (1992) LTD.		Webs	Calgary, Albe Canada T2E6 Ph: (403) 250-9 Fax: (403) 291-45 site: www.wshlabs.c
M & M Drilling Co. L Box 1, Site 22, RR# 2 Strathmore, AB T1P 1 Attn Bill Murray	td. 1 K5 1	P.O # 3278 Lab # 41121 Ph 934-4271 Fax 934-4865	Client I.D D Legal Date Sampled Date Received Date Reported	eb Signer House Well SE-10-27-22-W4 11/26/03 11/27/03 12/4/03
		WATER RESU	ЛТS	
Cations	Anions		General Parameters	
Saturation Index Calcium Iron Magnesium Manganese Potassium Silicon Sodium Ammonium Sum of Cations Sum of Cations Sum of Anions Ionic Balance "% Difference T.D.S. / E.C. Ratio	O.1 Bicarbo 0.1 Bicarbo 5.1 Bromide 0.034 Carbona < 0.1	$\begin{array}{c c} mgr L \\ \hline mgr L \\ \hline 812 \\ cs \\ c$	E.C. (µS/cm) Coliform, Total Escherichia Coli (E.Coli Heterotrophic Plate Count Hardness (CaCO ₃) pH Sulfides (S) T. Alkalinity (CaCO ₃) T.D.S (Calculated) Turbidity (N.T.U) Total Organic Carbon Total Kjeldahl Nitrogen Total Phosphorus Color (T.C.U)	mg/L 1941 TNTC 0 (CFU/100m) (CFU/100m) (MPN/mL) 50FT 8.15 0.01 666 1149 1.60 10.5 n
	9.5. <u>5</u> µ10) mm p.c./	Croce Matale Droi	U.	
Phosphorus Thallium Arsenic Selenium Chromium Zinc Lead Copper Cobalt Silty samples may acco *TDS: Total Dissolved *TNTC: Too Numerous The results above are a	ag/L 77 Cadmius < 5	m $\frac{ug/L}{<0.8}$ m <0.8 m <0.8 m <0.8 m <0.8 m <0.8 m <0.8 m <0.8 m <0.8 m <2 m <0.8 m <2 m <0.8 m <2 m <0.8 m <2 m <2 m <10.8 m <2 m <2	ug/L Barium 107 Lithium 120 Tin Molybdenum Antimony Titanium Zirconium Uranium Mercury Scon content. on Ratio ction limit	
Please see the reverse s	ide of this page for the	: Canadian Drinl	ing Water Quality Guidelin Certified By	

HCL groundwater consulting environmental sciences

Page A - 5

Signer Domestic Water Well Chemical Analysis (12 Aug 04)

WSH	Dabs	r (1992) LTD.		v	3851B - 21 Str Calgary Canada Ph: (403) 2 Fax: (403) 2 /ebsite: www.wshla	eat N.E Alberta T2E6T8 50-9164 91-4597 abs.con
M & M Drilling Box 1, Site 22, RR	Co. Lt 2 P 1K5	d.	Phone: Fax: Cell:	934-4271 934-4865	Lab Number: PO Number:	44210 4121
Attention: Client ID: Location: Legal:	S	Bill Murray Debble Singer SE-10-27-22-W4	Date Samp Date Recen Date Repor	led: 8/13/200 ved: 8/13/200 ted: 8/17/200)4)4)4	
Cations		General Paramete	ers		Traçe Metals	-1
r.	mg/L		with the C (and)	1040	The History	µg/L
Calcium	8.5	Electrical Conduct	ivity (Hatem)	1946	Therium	<0
Iron	0.060	pH (in pH units)	0.001	8.12	Thomam	<0
Magnesium	1.0	Hardness (as mg/l	$L CaCO_3)$	25	In	
Manganese	<0.01	Total Alkalinity (as	mg/L CaCO ₃)	662	Molybdenum	3
Potassium	2.3	Calculated TDS (n	ng/L)	1107	Antimony	4
Sodium	465				Titanium	<1
Ammonium	<0.1	Other Parameters	5		Zirconium	2
		-			Phosphorus	106
Anions		Total Coliform (CF	U/100mL)	TNTC	Arsenic	4
	mg/L	Escherichia Colifor	rm (CFU/100mL)	0	Selenium	<2
dicarbonales	807	Heterotrophic Plat	e Count (MPN/mL)	Lead	<2
Bromides	<0.6	Sulfides (S) (mg/L)	0.020	Bismuth	<2
Carbonates	0	Turbidity (NTU)		1.2	Nickel	<2
Chlorides	232	Color (TCU)	BACTE	RIA DETECT	ED Aluminum	12
Fluorides	1.43	Total Kjeldahl Nitro	ogen (mg/LNECO	MMEND SHO	CK Chromium	<0.8
Nitrates	< 0.2	Ammonia Nitroger	n (mg/L) CH	LORINATION	Zinc	17
Nitrites	< 0.3	Organic Nitrogen	(mg/L)		Соррег	1
NO3 + NO2	<0.2	Total Phosphorus	(mg/L)		Cadmlum	<0.8
Sulfates	<0.6	Total Organic Car	bon (mg/L)	10.6	Beryllium	<0.8
		Dissolved Organic	Carbon (mg/L)		Cobalt	3
Sum of Cations	20.78	Trihalomethanes (mg/L)		Vanadium	1
Sum of Anions	19.85	Boron (mg/L)			Silver	<0.8
Ion Balance	1.05	Silicon (mg/L)		11	Strontium	60
% Difference	2.31	Phenol (mg/L)			Barium	87
TDS / EC Ratio	0.57	Cyanide (mg/L)			Lithium	92
SAR	40.16	Total Suspended	Solids (mg/L)		Uranium	
Caturalian Indau	03	Total Dissolved So	pilds (mg/L)		Mercury	

Silty samples may account for higher iron, manganese and silicon concentrations.

The results above are related only to the items analyzed.

"ease see the reverse side of this page for the Canadian Drinking Water Quality Guideline.

... JS = Total Dissolved Solids, SAR = Sodium Adsorption Ratio, TNTC = Too Numercus To Count (>200 colonies), < denotes less than detection limit Analysis methods are based on <u>Standard Methods for the Examination of Water and Wasterwater 20th Edition</u> and can be made available upon request.

Signer Domestic Water Well Chemical Analysis (22 Sep 04) Analytical Report

Bill to: Hydrogeological Consultants Report to: Hydrogeological Consultants 10704 - 181 Street Edmonton, AB, Canada T5S1K8 Attn: Mike Semple Sampled By: MS Company: HCL

Project ID: 04-512 Name: D. Signer Dom. W.W. Location: Redland LSD: P.O.: 2371 Acct. Code: Norwest Labs 7217 Roper Road Edmonton, AB. T6B 3J4 Phone: (780) 438-5522 Fax: (780) 438-0396

 NWL Lot ID:
 334160

 Control Number:
 E 207456

 Date Received:
 Sep 22, 2004

 Date Reported:
 Sep 24, 2004

 Report Number:
 598426

Page:

1 of 3

NWL Number 334160-1 Sample Description D. Signer - Hose bib. Sample Matrix Water - Potable Detection Guideline Guideline Units Result Limit Limit Comments Analyte Microbiological Analysis CFU/100 mL 1 Pass **Total Coliforms** Membrane Filtration <1 <1 Pass Fecal Coliforms Membrane Filtration CFU/100 mL <1 1 <1 Physical and Aggregate Properties Colour Apparent, Potable Colour units <5 5 15 Acceptable Turbidity NTU 0.9 0.1 5 Acceptable Temp. of observed pH °C 19.7 n/a and EC **Routine Water** 8.38 6.5 - 8.5 Acceptable pH **Electrical Conductivity** µS/cm at 25 1890 1 n/a C Extractable 4.2 0.2 Calcium mg/L n/a Magnesium Extractable mg/L 0.3 0.1 n/a 200 Above Aesthetic Sodium Extractable mg/L 437 0.4 1.2 Potassium 0.4 Extractable mg/L n/a 0.01 Acceptable Iron Extractable mg/L 0.01 0.3 <0.005 0.005 0.05 Acceptable Manganese Extractable mg/L Chloride Dissolved mg/L 212 0.5 250 Acceptable Fluoride 1.26 0.05 Pass mg/L 1.5 Nitrate - N mg/L <0.1 0.1 10 Pass <0.05 0.05 Pass Nitrite - N mg/L 1 Nitrate and Nitrite - N <0.2 0.2 Pass 10 mg/L Sulphate (SO4) 0.45 0.2 500 Acceptable mg/L Hydroxide <5 5 n/a mg/L 6 Carbonate mg/L 7 n/a Bicarbonate 831 5 n/a mg/L P-Alkalinity as CaCO3 mg/L 6 5 n/a Highly Alkaline T-Alkalinity 694 5 as CaCO3 mg/L Total dissolved solids mg/L 1070 1 500 Above Aesthetic Hardness mg/L Soft as CaCO3 11.6 Ionic Balance % 97 n/a

Please Note: Related regulatory criteria are provided as a service to clients. Norwest Labs' responsibility is limited to analytical data. We are not responsible for ensuring that listed criteria are current, scientifically valid, appropriate and sufficient for the user of the data.

HCL groundwater consulting environmental sciences Bill to: Hydrogeological Consultants Report to: Hydrogeological Consultants 10704 - 181 Street Edmonton, AB, Canada T5S1K8 Attn: Mike Semple Sampled By: Mike Semple Company: HCL

Signer Domestic Water Well Chemical Analysis (30 Sep 04) Analytical Report

Project ID: 04-512 Name: D. Signer Dom WW Location: LSD: P.O.: 2386 Acct. Code: Norwest Labs Bay 9, 2712-37 Avenue N.E. Calgary, AB. T1Y-5L3 Phone: (403) 291-2022 Fax: (403) 291-2021

NWL Lot ID:	336130
Control Number:	E 183535
Date Received:	Sep 30, 2004
Date Reported:	Oct 05, 2004
Report Number:	602292

Page: 1 of 3

NWL Number 336130-1 Sample Date Sep 30, 2004 Sample Description D. Signer Dom WW / Sept 30/04 Sample Matrix Water - Potable Detection Guideline Guideline Result Analyte Units Limit Limit Comments Microbiological Analysis **Total Coliforms** Membrane Filtration CFU/100 mL <1 1 <1 Pass Escherichia coli Membrane Filtration CFU/100 mL <1 1 Pass <1 Physical and Aggregate Properties 5 5 Acceptable Colour Apparent, Potable Colour units 15 6.8 NTU 0.1 Above Asethetic Turbidity 5 Temp. of observed pH °C 20.1 n/a and EC **Routine Water** 8.42 6.5 - 8.5 Acceptable DH 1930 **Electrical Conductivity** µS/cm at 25 1 n/a С 3.8 0.2 n/a Calcium Extractable mg/L Extractable mg/L 0.3 0.1 n/a Magnesium Extractable 440 0.4 200 Above Aesthetic Sodium mg/L Potassium Extractable mg/L 0.9 0.4 n/a Extractable <0.01 0.01 Acceptable Iron mg/L 0.3 Extractable mg/L <0.005 0.005 0.05 Acceptable Manganese Acceptable Chloride Dissolved mg/L 224 0.5 250 Fluoride mg/L 1.30 0.05 1.5 Pass Nitrate - N <0.1 0.1 10 Pass mg/L <0.05 0.05 Pass Nitrite - N mg/L 1 Nitrate and Nitrite - N mg/L <0.2 0.2 10 Pass 0.2 Sulphate (SO4) mg/L 0.60 500 Acceptable Hydroxide <5 5 n/a mg/L Carbonate mg/L 12 6 n/a Bicarbonate mg/L 820 5 n/a 10 5 n/a P-Alkalinity as CaCO3 mg/L 693 5 Highly Alkaline T-Alkalinity as CaCO3 mg/L Total dissolved solids mg/L 1090 1 500 Above Aesthetic Soft Hardness as CaCO3 mg/L 11 Ionic Balance % 96 n/a

Please Note: Related regulatory criteria are provided as a service to clients. Norwest Labs' responsibility is limited to analytical data. We are not responsible for ensuring that listed criteria are current, scientifically valid, appropriate and sufficient for the user of the data.

Signer Domestic Water Well Bacterial Activity Reaction Test Results (BART) (Sampled on 22 Sep 04 and 30 Sep 04)

Samples collected on: 22-Sep-04

		No. Contraction		NT THE REAL	Days Since	Groundwa	ter Sample	e Collected	The state of the	MI-MENSIO	MEN STREET
	BART	4 1	2	3	4	5	6	7	8	9	10
Sample/Source	Test	23 Sep 04	24 Sep 04	25 Sep 04	26 Sep 04	27 Sep 04	28 Sep 04	29 Sep 04	30 Sep 04	01 Oct 04	02 Oct 04
Singer Dom. WW / cistern	IRB	-	-	-	+	+	+	+	+	+	+
	SRB	-	+	+	+	+	+	+	+	+	+
	SLYM		+	+	+	+	+	+	+	+	+

+ Positive Reaction - Negative Reaction

IRB - Iron-Related Bacteria SRB - Sulfate-Reducing Bacteria SLYM - Slime-Forming Bacteria Aggressivity of Bacteria: high medium low

Notes: IRB - Foam around ball on day 4 SRB - Black at base on day 2 SLYM - Cloudy on day 2

Samples collected on: 30-Sep-04

		12 M 19	New Yorks	S14 5414	Days Since	Groundwa	ter Sample	e Collected	THE LAN		SHORE N
	BART	1	2	3	4	5	6	7	8	9	10
Sample/Source	Test	01 Oct 04	02 Oct 04	03 Oct 04	04 Oct 04	05 Oct 04	06 Oct 04	07 Oct 04	08 Oct 04	09 Oct 04	10 Oct 04
0	100									in all a star of the star	
Singer Dom WW	IRB	-	+	+	+	+	+	+	+	+	+
(bailed from WW)	SRB	-	+	+	+	+	+	+	+	+	+
	SLYM	-	-	+	+	+	+	+	+	+	+

+ Positive Reaction - Negative Reaction

IRB - Iron-Related Bacteria SRB - Sulfate-Reducing Bacteria SLYM - Slime-Forming Bacteria Aggressivity of Bacteria:

Notes:

IRB - Foam around ball on day 2 SRB - Black at base on day 2

SLYM - Cloudy on day 3

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	Ву	Batch
L389137-1SIGNER CISTERNSample By:LESLIE on 16-MAY-06 @ 12:30Matrix:WATER								
Iron Reducing Bacteria	<10		10	CFU/mL		17-MAY-06	BC	R406887
Sulphate Reducing Bacteria	<0.3		0.3	MPN/mL		17-MAY-06	BC	R406887
Total & Fecal Coliforms								
Total Coliforms	<1		1	CFU/100ml		17-MAY-06	BC	R401817
Fecal Coliforms	<1	11	1	CFU/100ml	-	17-MAY-06	BC	R401817
L389137-2 SIGNER RESIDENCE						0		
Sample By: LESLIE on 16-MAY-06 @ 12:30								
Matrix: WATER								
Dissolved Metals								
Dissolved Trace Metals	-0.005		0.005			10 1/11/ 00		Diatana
Sliver (Ag)	<0.005		0.005	mg/L		19-MAY-06	QLI	R401300
Automatin (Ar)	<0.01	1	0.01	mg/L		19-MAY-06	QLI	R401300
Barium (Ba)	0.29		0.05	mg/L		19-MAY-06	QLI	R401300
Bervlium (Be)	<0.001		0.003	mg/L		19-MAY-06	QLI	R401300
Cadmium (Cd)	<0.001		0.001	mg/L		19-MAY-06	OLI	R401300
Cobalt (Co)	<0.007		0.002	mg/L		19-MAY-06	OLI	R401300
Chromium (Cr)	0.006		0.005	ma/L		19-MAY-06	QLI	R401300
Copper (Cu)	< 0.001		0.001	mg/L		19-MAY-06	QLI	R401300
Molybdenum (Mo)	< 0.005		0.005	mg/L		19-MAY-06	QLI	R401300
Nickel (Ni)	< 0.002		0.002	mg/L		19-MAY-06	QLI	R401300
Lead (Pb)	<0.005	10.00	0.005	mg/L		19-MAY-06	QLI	R401300
Tin (Sn)	<0.05		0.05	mg/L		19-MAY-06	QLI	R401300
Strontium (Sr)	0.086		0.005	mg/L		19-MAY-06	QLI	R401300
Titanium (Ti)	0.001		0.001	mg/L		19-MAY-06	QLI	R401300
Thallium (TI)	<0.05		0.05	mg/L		19-MAY-06	QLI	R401300
Vanadium (V)	0.006		0.001	mg/L		19-MAY-06	QLI	R401300
Zinc (Zn)	0.005		0.001	mg/L		19-MAY-06	QLI	R401300
Dissolved Major Metals						10 110 00	-	Dunner
Potassium (K)	4.2		0,5	mg/L		18-MAY-06	SYF	R400325
Magnesium (Ma)	0.36		0.1	mg/L		18 MAY 06	STF	R400325
Sodium (Na)	409		0.01	mg/L		18-MAY-06	SVE	R400325
Iron (Fe)	0.039		0.005	mg/L		18-MAY-06	SVE	R400325
Manganese (Mn)	0.003		0.001	mg/L		18-MAY-06	SYF	R400325
Methane, Ethane and Ethene; Dissolved		-						100.00
Methane, Dissolved	27	EHT	0.005	mg/L		23-MAY-06	NOS	R401520
Ethane, Dissolved	<0.005	EHT	0.005	mg/L		23-MAY-06	NOS	R401520
Ethene, Dissolved	<0.005	EHT	0.005	mg/L		23-MAY-06	NOS	R401520
Iron Reducing Bacteria	<10	1.00	10	CFU/mL	4 1 1	17-MAY-06	BC	R406887
Sulphate Reducing Bacteria	<0.3		0.3	MPN/mL		17-MAY-06	BC	R406887
Total & Fecal Coliforms	5.		1				3.5	2.01210
Total Coliforms	<1		1	CFU/100mL	n 17	17-MAY-06	BC	R401817
	<1		1	CFU/100mL		17-MAY-06	BC	R401817
Benzene	<0.0005		0.0005	mc/l	18-MAY-06	18-MAY-06	KED	R400622
Toluene	<0.0005		0.0005	mg/L	18-MAY-06	18-MAY-06	KEB	R400632
Ethylbenzene	<0.0005		0.0005	mg/L	18-MAY-06	18-MAY-06	KEB	R400632
Xylenes	< 0.0005		0.0005	ma/L	18-MAY-06	18-MAY-06	KEB	R400632
Routine Water: Major Ions, Fe & Mn			1				0.077	

Sample Detai	ls/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	By	Batch
L389137-2	SIGNER RESIDENCE						1.1		
Sample By;	LESLIE on 16-MAY-06 @ 12:30								1
Matrix:	WATER								6
Routine	Water: Major Ions, Fe & Mn		1				Common .	1	L
	Iron (Fe)-Extractable	0.10		0.06	mg/L		18-MAY-06	RAZ	R399708
	Manganese(Mn)-Extractable	< 0.02		0.02	mg/L		18-MAY-06	RAZ	R399708
	Chloride (Cl)	239		0.1	mg/L		18-MAY-06	LHH	R400128
	Nitrate+Nitrite-N	< 0.05		0.05	mg/L		18-MAY-06	LHH	R400128
	Nitrate-N	<0.05		0.05	ma/L	1	18-MAY-06	LHH	R400128
	Nitrite-N	<0.05		0.05	mc/L		18-MAY-06	LHH	R400128
	Sulphate (SO4)	<0.5		0.5	ma/L	1	18-MAY-06	IHH	R400128
nH Co	eductivity and Total Alkalinity	-0.0		0.0	ing L		10 11/1 00	Lint	Tribule
pri, 00	pH	8.4		0.1	pH		17-MAY-06	LPW	R400078
	Conductivity (EC)	1910		3	uS/cm		17-MAY-06	LPW	R400078
	Bicarbonate (HCO3)	809		5	mg/L		17-MAY-06	LPW	R400078
	Carbonate (CO3)	12		5	mg/L		17-MAY-06	LPW	R400078
	Hydroxide (OH)	<5		5	mg/L		17-MAY-06	LPW	R400078
	Alkalinity, Total (as CaCO3)	683		5	mg/L		17-MAY-06	LPW	R400078
Ion Bal	ance Calculation								
	Ion Balance	93.8			%		19-MAY-06		
	TDS (Calculated)	1090			mg/L	4	19-MAY-06		1
	Hardness (as CaCO3)	11			mg/L	4	19-MAY-06		
ICP me	tals for routine water								
	Calcium (Ca)	3.9		0.5	mg/L		18-MAY-06	RAZ	R399708
	Potassium (K)	1.1		0.1	mg/L		18-MAY-06	RAZ	R399708
	Magnesium (Mg)	0.4		0.1	mg/L		18-MAY-06	RAZ	R399708
	Sodium (Na)	434		1	mg/L		18-MAY-06	RAZ	R399708
L389137-3	SIGNER SLUDGE								
Sample By:	LESLIE on 16-MAY-06 @ 12:30								
Matrix:	WATER					1			
	Postaria Identification by Ribet ming	Cas attachment				25 MAY 06	26 MAY 06	TUT	P403045
Mater Correct	Bacteria identification by Ribotyping	See attachment.				25-10141-00	20-IVIA 1-00	101	R403943
Aeromonas	negative bacteria. Isolate #1: hydrophila. Isolate #2: Aeromonas	1 - Contract							
hydrophila	nyorophila isolato #2. Acromonas								
	Special Request	See Below	1			1.1.1.1.1	25-MAY-06	BTV	R404270
		Additional Text: Gran	negative.	Possible of	organism Ae	eromonas hydr	ophilia group	1.	
	The second second second								
	* Refer to Referenced Information for	Qualifiers (if any) and Me	thodology.						
				1.5					
									-

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	By	Batch
L399881-1 (1) SIGNER WELL	1000							
Sampled By: I.M on 14-JUN-06 @ 11:00								2.
Matrix: WATER								
Dissolved Metals								
Dissolved Major Metals	1.55			1.00	1 A 1			Sec.2.
Iron (Fe)	0.239		0.005	mg/L		15-JUN-06	HAS	R409904
Manganese (Mn)	0.013		0.001	mg/L		15-JUN-06	HAS	R409904
Dissolved Trace Metals	-0.005		0.005			AS UNLOG	011	D400000
Sliver (Ag)	<0.005		0.005	mg/L		15-JUN-06	QLI	R409998
Roron (R)	0.09		0.01	mg/L		15-JUN-06	QLI	R409990
Barium (Ba)	0.122		0.00	mall		15-1UN-06	OLI	R409998
Beryllium (Be)	<0.001		0.001	mg/L		15-JUN-06	OLI	R409998
Cadmium (Cd)	<0.001		0.001	mg/L		15-JUN-06	QLI	R409998
Cobalt (Co)	< 0.002		0.002	mg/L		15-JUN-06	QLI	R409998
Chromium (Cr)	0.005		0.005	mg/L		15-JUN-06	QLI	R409998
Copper (Cu)	0.014		0.001	mg/L		15-JUN-06	QLI	R409998
Molybdenum (Mo)	< 0.005		0.005	mg/L		15-JUN-06	QLI	R409998
Nickel (Ni)	< 0.002		0.002	mg/L		15-JUN-06	QLI	R409998
Lead (Pb)	0.135		0.005	mg/L		15-JUN-06	QLI	R409998
Tin (Sn)	< 0.05		0.05	mg/L		15-JUN-06	QLI	R409998
Strontium (Sr)	0.090		0.005	mg/L		15-JUN-06	QLI	R409998
Titanium (Ti)	0.003		0.001	mg/L		15-JUN-06	QLI	R409998
Thallium (TI)	<0.05		0.05	mg/L		15-JUN-06	QLI	R409998
Vanadium (V)	0.003		0.001	mg/L		15-JUN-06	QLI	R409998
Zinc (Zn)	0.231		0.001	mg/L		15-JUN-06	QLI	R409998
Free CO2	<1		1	mg/L		14-JUN-06	GCM	R409646
Heterotrophic Plate Count	30000		1	CFU/mL	1.	14-JUN-06	BC	R412484
Iron Reducing Bacteria	<10		10	CFU/mL		14-JUN-06	BC	R416521
Aeromonas hydrophila	18		1	CFU/mL		14-JUN-06	BC	R412485
Sulphate Reducing Bacteria	<0.3		0.3	MPN/mL		14-JUN-06	BC	R416521
Total & Fecal Coliforms Total Coliforms	CGWC		1	CFU/100mL	$1 \leq i \leq j$	14-JUN-06	BC	R409876
Fecal Coliforms	2		1	CFU/100mL		14-JUN-06	BC	R409876
Note: CGWC: Confluent Growth with Coliforms Routine Water: Major Ions, Fe & Mn								
Chloride (Cl)	232		0.1	mg/L		14-JUN-06	LHH	R409286
ICP metals for routine water	60		0.5	mall		15- ILIN-06	RA7	R400515
Potassium (K)	1.1		0.1	mg/L		15-JUN-06	RAZ	R409515
Magnesium (Mg)	0.5		0.1	mg/L		15-JUN-06	RAZ	R409515
Sodium (Na)	481		1	mg/L		15-JUN-06	RAZ	R409515
Ion Balance Calculation						free and the second		
Ion Balance	107			%		15-JUN-06		
TDS (Calculated)	1120			mg/L		15-JUN-06		
Hardness (as CaCO3)	17			mg/L		15-JUN-06		1.000
Iron (Fe)-Extractable	<0.06		0.06	mg/L		15-JUN-06	RAZ	R409515
Manganese(Mn)-Extractable	<0.02		0.02	mg/L		15-JUN-06	RAZ	R409515
Nitrate+Nitrite-N	<0.05		0.05	mg/L		14-JUN-06	LHH	R409286
Nitrate-N	<0.05		0.05	mg/L		14-JUN-06	LHH	R409286
Nitrite-N	<0.05		0.05	mg/L		14-JUN-06	LHH	R409286
Sulphate (SO4)	<0.5		0.5	mg/L		14-JUN-06	LHH	R409286
pH, Conductivity and Total Alkalinity			1					
Hq	8.5		0.1	pH		15-JUN-06	JF	R409243
Conductivity (EC)	1890		3	uS/cm		15-JUN-06	JF	R409243

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L399881-1 (1) SIGNER WELL								
Sampled By: LM on 14-JUN-06 @ 11:00				1				
Matrix: WATER				1 1				
Routine Water: Major Jons. Fe & Mn				1				1
pH. Conductivity and Total Alkalinity			1.2	1		1		
Bicarbonate (HCO3)	780		5	mg/L		15-JUN-06	JF	R409243
Carbonate (CO3)	17		5	mg/L		15-JUN-06	JF	R409243
Hydroxide (OH)	<5		5	mg/L		15-JUN-06	JF	R409243
Alkalinity, Total (as CaCO3)	667		5	mg/L		15-JUN-06	JF	R409243
L399881-2 (2) SIGNER CISTERN		1						
Sampled By: LM on 14-JUN-06 @ 11:30								1
Matrix: WATER								
Dissolved Metals						1		
Dissolved Major Metals	1.1.1.1.1.1.1		1.12			12 1 1 2 2	1002	
Iron (Fe)	0.023		0.005	mg/L		15-JUN-06	HAS	R409904
Manganese (Mn)	0.003		0.001	mg/L		15-JUN-06	HAS	R409904
Dissolved Trace Metals	40.00F		0.005	ma/l		15 11 11 00	011	D400000
Aluminum (Al)	<0.005		0.005	mg/L		15 11 10 06	QLI	R409990
Aluminum (Al)	<0.01		0.01	mg/L		15-JUN-00	QLI	R409990
Boron (B)	0.32		0.05	mg/L		15-JUN-06	QLI	R409998
Bandlium (Ba)	0.110		0.003	mg/L		15-3014-00	QLI	R409998
Codmium (Cd)	<0.001		0.001	mg/L		15-JUN-06	QLI	R409998
Cadmium (Cd)	<0.001		0.001	mg/L		15-JUN-06	QLI	R409998
Cobait (Co)	<0.002		0.002	mg/L		15-JUN-06	QLI	R409998
Corromium (Cr)	<0.005		0.005	mg/L		15-JUN-06	QLI	R409998
Copper (Cu)	<0.001	1.1.1.1	0.001	mg/L		15-JUN-06	QLI	R409998
	<0.005		0.005	mg/L		15-JUN-06	QLI	R409998
	<0.002		0.002	mg/L		15-JUN-06	QLI	R409998
Lead (Pb)	<0.005		0.005	mg/L		15-JUN-06	QLI	R409998
Tin (Sn)	<0.05		0.05	mg/L		15-JUN-06	QLI	R409998
Strontium (Sr)	0.091		0.005	mg/L		15-JUN-06	QLI	R409998
Titanium (TI)	0.001		0.001	mg/L		15-JUN-06	QLI	R409998
	<0.05		0.05	mg/L		15-JUN-06	QLI	R409998
	0.003		0.001	mg/L		15-JUN-06	QLI	R409998
Zinc (Zn)	0,004		0,001	mg/L		15-JUN-06	QLI	R409998
Free CO2	<1		1	mg/L		14-JUN-06	GCM	R409646
Heterotrophic Plate Count	22000		1	CFU/mL		14-JUN-06	BC	R412484
Iron Reducing Bacteria	250		10	CFU/mL		14-JUN-06	BC	R416521
Aeromonas hydrophila	26		1	CFU/mL		14-JUN-06	BC	R412485
Sulphate Reducing Bacteria	<0.3		0.3	MPN/mL		14-JUN-06	BC	R416521
Total & Fecal Coliforms								
Total Coliforms	<1		1	CFU/100mL		14-JUN-06	BC	R409876
Fecal Coliforms	<1		1	CFU/100mL		14-JUN-06	BC	R409876
Routine Water: Major Ions, Fe & Mn						1.1.1.1.1.1		A number
Chloride (Cl)	220		0.1	mg/L		14-JUN-06	LHH	R409286
ICP metals for routine water Calcium (Ca)	3.6		0.5	ma/l		15-JUN-06	RA7	R409515
Potassium (K)	1.2		0.1	mg/L		15- IUN-06	RAZ	R409515
Magnesium (Mg)	0.4		0.1	mg/L		15-JUN-06	RAZ	R409515
Sodium (Na)	491		1	mg/L		15-JUN-06	RAZ	R409515
Ion Balance Calculation	401			ing/L			1 V VC	
Ion Balance	108			%		15-JUN-06		
TDS (Calculated)	1130			mg/L		15-JUN-06		
Hardness (as CaCO3)	11			mg/L		15-JUN-06		
	-0.00		0.00	mall		AF ILINI OR	DAZ	DADOFAE

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L399881-2 (2) SIGNER CISTERN								
Sampled By: LM on 14-JUN-06 @ 11:30						1		
Matrix: WATER								
Routine Water: Major Jons, Fe & Mp			1	· · · · ·		h		
Manganese(Mn)-Extractable	< 0.02		0.02	mg/L		15-JUN-06	RAZ	R409515
Nitrate+Nitrite-N	< 0.05		0.05	ma/L		14-JUN-06	LHH	R409286
Nitrate-N	<0.05		0.05	mg/l		14-JUN-06	THH	R409286
Nitrite-N	<0.05		0.05	mg/L		14-JUN-06	THH	R409286
Sulphate (SO4)	<0.5		0.00	mg/L		14-11.IN-06	LHH	R409286
of Conductivity and Total Alkalinity	-0.5		0.5	mare		14-5011-00	Lini	11403200
pH	8.5		0.1	pH		15-JUN-06	JF	R409243
Conductivity (EC)	1900		3	uS/cm		15-JUN-06	JF	R409243
Bicarbonate (HCO3)	801		5	mg/L		15-JUN-06	JF	R409243
Carbonate (CO3)	20		5	mg/L		15-JUN-06	JF	R409243
Hydroxide (OH)	<5		5	mg/L		15-JUN-06	JF	R409243
Alkalinity, Total (as CaCO3)	691		5	mg/L		15-JUN-06	JF	R409243
L399881-3 (3) SIGNER KITCHEN TAP (COLD)								
Sampled By: LM on 14-JUN-06 @ 11:45								
Matrix: WATER								
Dissolved Metals								
Dissolved Major Metals	1.		1.00					
Iron (Fe)	0.033		0,005	mg/L		15-JUN-06	HAS	R409904
Manganese (Mn)	0.007		0.001	mg/L		15-JUN-06	HAS	R409904
Dissolved Trace Metals			1011					
Silver (Ag)	<0.005		0.005	mg/L		15-JUN-06	QLI	R409998
Aluminum (Al)	0.02		0.01	mg/L		15-JUN-06	QLI	R409998
Boron (B)	0.32		0.05	mg/L		15-JUN-06	QLI	R409998
Banum (Ba)	0.115		0.003	mg/L		15-JUN-06	QLI	R409996
Codmium (Cd)	<0.001		0.001	mg/L		15-JUN-06	OLI	R409990
Cabalt (Co)	<0.001		0.001	mg/L		15-JUN-06	OLI	R409990
Chromium (Cr)	<0.002		0.002	mg/L		15-JUN-06	OLI	R409998
Copper (Cu)	0.000		0.001	mg/L	1.0	15-JUN-06	OLI	R409998
Molybdenum (Mo)	<0.001		0.005	mg/L		15-JUN-06	QLI	R409998
Nickel (Ni)	< 0.002		0.002	ma/L		15-JUN-06	QLI	R409998
Lead (Pb)	<0.005		0.005	mg/L		15-JUN-06	QLI	R409998
Tin (Sn)	< 0.05		0.05	mg/L		15-JUN-06	QLI	R409998
Strontium (Sr)	0.092		0.005	mg/L		15-JUN-06	QLI	R409998
Titanium (Ti)	0.001		0.001	mg/L		15-JUN-06	QLI	R409998
Thallium (TI)	<0.05		0.05	mg/L	1.	15-JUN-06	QLI	R409998
Vanadium (V)	0.004		0.001	mg/L		15-JUN-06	QLI	R409998
Zinc (Zn)	0.018		0.001	mg/L		15-JUN-06	QLI	R409998
Free CO2	<1		1	mg/L		14-JUN-06	GCM	R409646
Heterotrophic Plate Count	16000		1	CFU/mL		14-JUN-06	BC	R412484
Iron Reducing Bacteria	90	1	10	CFU/mL		14-JUN-06	BC	R416521
Aeromonas hydrophila	46		1	CFU/mL		14-JUN-06	BC	R412485
Sulphate Reducing Bacteria	<0.3		0.3	MPN/mL		14-JUN-06	BC	R416521
Total & Fecal Coliforms			0.0					
Total Coliforms	<1		1	CFU/100mL		14-JUN-06	BC	R409876
Fecal Coliforms	<1		1	CFU/100mL		14-JUN-06	BC	R409876
Coutine Water: Major Ions, Fe & Mn	001					14 11 11 100	11.01	DAGGGGGG
Chioride (CI)	221		0.1	mg/L		14-JUN-06	LHH	R409286
Calcium (Ca)	3.7		0.5	mg/L		15-JUN-06	RAZ	R409515

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	By	Batch
L399881-3 (3) SIGNER KITCHEN TAP (COLD)								
Sampled By: LM on 14-JUN-06 @ 11:45								
Matrix: WATER								
Routine Water: Major Ions, Fe & Mn								
ICP metals for routine water	1.2		0.1	ma/l		15-JUN-06	RAZ	R409515
Magnesium (Mg)	1.2		0.1	ma/L		15-JUN-06	RAZ	R409515
Sodium (Na)	451		1	mg/L		15-JUN-06	RAZ	R409515
Ion Balance Calculation	99.2			%		15-JUN-06		
TDS (Calculated)	1090			mg/L	1	15-JUN-06		
Hardness (as CaCO3)	14			mg/L		15-JUN-06		
Iron (Fe)-Extractable	0.12		0.06	mg/L		15-JUN-06	RAZ	R409515
Manganese(Mn)-Extractable	<0.02		0.02	mg/L		15-JUN-06	RAZ	R409515
Nitrate+Nitrite-N	<0.05		0.05	mg/L		14-JUN-06	LHH	R409286
Nitrate-N	<0.05		0.05	mg/L		14-JUN-06	LHH	R409286
Nitrite-N	<0.05		0.05	mg/L		14-JUN-06	LHH	R409286
Sulphate (SO4)	<0.5		0.5	mg/L	1	14-JUN-06	LHH	R409286
pH, Conductivity and Total Alkalinity								
pH	8.5		0.1	pН		15-JUN-06	JF	R409243
Conductivity (EC)	1910		3	uS/cm		15-JUN-06	JF	R409243
Bicarbonate (HCO3)	805		5	mg/L		15-JUN-06	JF	R409243
Carbonate (CO3)	20		5	mg/L		15-JUN-00	JF	R409243
Alkaliaity Total (as CaCO3)	<5		5	mg/L		15-JUN-06	JF	R409243

#3, 6125 12th Street SE Calgary, Alberta Canada T2H 2K1 Tel (403) 253-7121 Fax (403) 252-9363 www.hydroqual.ca

			IG	si veho	IL.		
on (Client:	MIS202	Reference:	06-1160
Client					1.00		
Client:	Alberta Environr	nent		Operation:	NA		NVIRONA
Address:	2938 11St NE						AP EN
City:	Calgary			Prov./State:	Alberta		15
Country:	Canada		1	Postal/ZIP Code:	T2E 7L7	1.	F a
Tel:	403-297-5913			Fax:	403-297-8232		115 04
Contact:	Kevin Pilger			Billing:	NA	1	AUD
Sample							Cagery Car
collected:	2006/06/14	at:	Not Given	by:	K. Pilger		COTHER
shipped:	2006/06/14	by:	Client				
received:	2006/06/14	at:	1400	by:	L. Lamontaine		
signed-in:	2006/06/14	at:	1435	by:	B. MacDonald		
container:	Glass jars						
seals:	No	initials:	No	frozen:	No		
storage:	25 ± 20C						
Samples are o	disposed following	g Supportin	g Work Ins	truction 4.3.1.4.3			
sample	-1	-2	-3				
client	1	2	3				
		1111					

sample type	Water	Water	Water
volume (m ³)	NA	NA	NA
description	Well	Cistern 1	Cistern 2

Test Log

S

test	Misc	Misc	Misc	
started	2006/06/14	2006/06/14	2006/06/14	
by	B.Macdonald	B.Macdonald	B.Macdonald	
ended	2006/07/07	2006/07/07	2006/07/07	
reported	2006/07/07	2006/07/07	2006/07/07	
fax/e-mailed	2006/07/07	2006/07/07	2006/07/07	

Comments: Regular turnaround. Bacterial identification. Organisms observed: bacteria, amoebae, flagellates, ciliates, possible water fleas. All bacteria were common to all samples. Escherichia was identified to species via IDEXX.

note: na, not applicable; BG, bulk identification to genus; BGE, BG with enumeration; TG, tape identification to genus; RG, RCS identification to genus; RS, RCS identification to species; RC, RCS classification of organisms; AOC, Air-o-Cell spore trap analysis; SG, swab identification to genus; SS, swab identification to species; SGE, SG with enumeration; SSE, SS with enumeration Important: Unless otherwise stated, all samples were received in good condition. Results relate only to the items tested. Data is not corrected for blanks unless otherwise noted.

#3, 6125 12th Street SE Calgary, Alberta Canada T2H 2K1 Tel (403) 253-7121 Fax (403) 252-9363 www.hydroqual.ca

Test Report

Project: Alberta Environment Sample Date: 2006/06/14 Analysis Date: 2006/06/14 Report Date: 2006/07/07 Reference No.: 06-1160

Method: HydroQual Method 4.4.1.32 References: See attached sheet

Sample ID	Identification	
-1 Isolate 1	Enterobacter	
-2 Isolate 2	Bacillus	
-3 Isolate 3	Escherichia coli	
-4 Isolate 4	Chromobacterium	
-5 solate 5 (Dull yellow)	Corynebacterium	
-6 solate 6 (White colony)	Psuedomonas	
-7 solate 7 (Bright yellow)	Alcaligenes	

The test data and results are verified correct.

K. Steele, B.Sc., Quality Assurance Officer Authorized by

HydroQual is certified by the Canadian Association of Environmental Analytical Laboratories (CAEAL) and the American Industrial Hygiene Association (AIHA) in the EMLAP. We comply with American, Canadian, and European standards for laboratory practice and the requirements of ISO/IEC Guide 17025 and CAN-P-4D, General Requirements for the Competence of Testing and Calibration Laboratories.

Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumed for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

#3, 6125 12th Street SE Calgary, Alberta Canada T2H 2K⁻ Tel (403) 253-7121 Fax (403) 252-9363 www.hydroqual.ca

Test Report

Project: Alberta Environment Sample Date: 2006/06/14 Analysis Date: 2006/06/14 Report Date: 2006/07/07 Reference No.: 06-1160

 Method: Total Coliforms and Escherichia coli; IDEXX
 Reference: Enzyme Substrate Coliform Test, 9223B. Standard Methods for the Examination of Water and Wastewater, 20th ed. 1998. L.S. Clesceri, A.E., Greenberg, and A.D. Eaton (eds.). APHA, AWWA, WEF, Washington. (ISBN 0-87553-235-7).

Sample ID	Test Type	Endpoint (Most Probable Number)	Result (After 48hrs)
-1	Total Coliform Bacteria	Not Applicable	None
Yellow colony	Escherichia coli	Not Applicable	None
-2	Total Coliform Bacteria	Not Applicable	None
White colony	Escherichia coli	Not Applicable	None
-3	Total Coliform Bacteria	Not Applicable	Present
Well	Escherichia coli	Not Applicable	Present
-4	Total Coliform Bacteria	Not Applicable	Present
Cistern 1	Escherichia coli	Not Applicable	Present
-5	Total Coliform Bacteria	Not Applicable	None
Cistern 2	Escherichia coli	Not Applicable	None

The test data and results are verified correct. Authorized by K. Steele, B.Sc., Quality Assurance Officer

HydroQual is certified by the Canadian Association of Environmental Analytical Laboratories (CAEAL). We comply with American, Canadian, and European standards for laboratory practice and the requirements of ISO/IEC Guide 17025 and CAN-P-4D, General Requirements for the Competence of Testing and Calibration Laboratories. We participate in the American Industrial Hygiene Association's EMPAT program for proficiency testing in mould identification. Our liability is limited to the cost of the test requested on the sample as received. No liability in whole or in part is assumed for the collection, handling or transport of the sample, application or interpretation of the test data or results in part or in whole.

Sample Details	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L450605-1	LM110206A				1				
Sampled By:	CK/LM on 02-NOV-06 @ 13:05								
Matrix:	WATER								
Routine	Water Analysis								
20200-00	Chloride (Cl)	238		01	ma/l		03-NOV-06	IPW	R463428
ICP met	tals for routine water	200		0.1	mgre				14400420
	Calcium (Ca)	1.5		0.5	ma/L		03-NOV-06	LPW	R462706
	Potassium (K)	1.0		0.1	mg/L		03-NOV-06	LPW	R462706
	Magnesium (Mg)	0.4		0.1	mg/L		03-NOV-06	LPW	R462706
	Sodium (Na)	469		1	mg/L		03-NOV-06	LPW	R462706
Ion Bala	ance Calculation								1
	Ion Balance	101			%		08-NOV-06		
	TDS (Calculated)	1120			mg/L		08-NOV-06		
	Hardness (as CaCO3)	5		1	mg/L		08-NOV-06		
	Nitrate and Nitrite as N	<0.07		0.07	mg/L		08-NOV-06		
	Nitrate-N	< 0.05		0.05	mg/L		03-NOV-06	LPW	R463428
	Nitrite-N	< 0.05		0.05	mg/L		03-NOV-06	LPW	R463428
	Sulphate (SO4)	0.9		0.5	ma/L		03-NOV-06	IPW	R463428
pH. Cor	ductivity and Total Alkalinity			0.0			11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11100120
hud een	pH	8.4		0.1	pH		03-NOV-06		R462745
	Conductivity (EC)	1870		3	uS/cm		03-NOV-06		R462745
	Bicarbonate (HCO3)	809		5	mg/L		03-NOV-06		R462745
	Carbonate (CO3)	12		5	mg/L		03-NOV-06		R462745
	Hydroxide (OH)	<5		5	mg/L		03-NOV-06		R462745
	Alkalinity, Total (as CaCO3)	683		5	mg/L		03-NOV-06		R462745
L450605-2	LM110206B								
Sampled By:	CK/LM on 02-NOV-06 @ 13:05								
Matrix:	WATER								2
Total & F	ecal Coliform Count-MF								
	MF - Fecal Coliforms	<1		1	CFU/100mL	03-NOV-06	14-NOV-06	RBD	R463402
	MF - Total Coliforms	600	DLA	100	CFU/100mL	03-NOV-06	14-NOV-06	RBD	R463402
1450605-3	LM110206C				1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		120120120		
Sampled By:	CK/I M on 02 NOV 06 @ 13:05								
Sampled by.	SIVEN OF 02-NOV-00 @ 13.05								
Matrix:	WATER					1-0-0-0			
	Iron Bacteria	9000		25	CFU/mL	03-NOV-06	14-NOV-06	RBD	R465196
1450605-4	LM110206D	- grite	-						
Sampled By:	CK/I M on 02-NOV-06 @ 13:05								
Matrine	WATER								
Matrix:	WATER								
	Sulfur Reducing Bacteria	200		200	CFU/mL	03-NOV-06	14-NOV-06	RBD	R465194
	* Refer to Referenced Information for Qu	ualifiers (if any) and I	Vlethodology.						

ORGANICS ANALYSIS DATA SHEET

					C	lient: 1	Knaus				
Sample No:		Group	p Sample No:	Site	Descrip/Co	mment: 1	Domestic W	later	Well S	amplės -	Signer
Station No:			Project No:								
Agency:	34	Samp Type:	SampMatrix:	Collection:	Samp	Date:	2-Nov-06	Time:	1355	Samplers	ID:
SubGroups	FILE	VMV	NAME		ConcRpt	MDL	ConcRp	tUnit	InjD	ate	
			******				in animal	+	51.55		
DG_C1C4											
	W3848		Ethane		3,1		ug/L		9-N	ov-06	
	W3848		Ethylene		.4		ug/L		9-N	ov-06	
	W3848		Methane		34100.0		ug/L		9 - N	ov-06	
DG_TCD											
	L3848		Carbon dioxide		7.2		mg/L		9 - N	ov-06	
	L3848		Nitrogen		10.8		mg/L		9 - N	ov-06	

[ARC_Remarks] : Dissolved Water Gas

DG_C1C4 and DG_TCD - Disolved Gas in water sample

SubGroups

 G_C1C4 and G_TCD = free Gas from canister

 Certified For: Yogesh Kumar, Business Unit Manager
 Contact Person: Grant Prill

 Environmental Monitoring
 Environmental Monitoring

 By:
 Alberta Research Council

 Vegreville, Alberta
 Vegreville, Alberta T9C 1T4

 Date:
 15-Nov-06
 (780) 632-8455

CARBON ISOTOPE ANALYSIS

								A	652812:D4939	5
		Sam	ale Point I.D.	Client I.D.		Meter Nu	mber	Lä	aboratory Number	
ALBERTA E	NVIRONMEN	1				180		Mall ID		
ALBERTA E	NVIRONMEN	T SIGNER				CK		ALBERT	A ENVIRO.	
Well Name						Name of Sam	pler	Company		
					GRAB			Tedlar Ba	ag	
Field or Area		P	ool ar Zone		Sample Point			Container Ide	ntity	Percent Ful
Test Recovery		Interval 1	Interval 2	Interval 3	Ele	vations (m)	Sample Gathering Pol	nt	Solution	n Gas
		From:								
Test Type No.	Multiple Recovery	10:			КВ	GRD	N 0.000000		W 0.000000	
	— Production Rates		Gauge P	ressures kPa	Temp	erature °C	GPS		GPS	
Water m3/d	Oil m3/d	Gas 1000m3/d	Source	As Received	Source	As Received	Well Fluid Type		Licence No.	
2006/11/02	16:26		200	6/11/06	2006/11/13	2006/11	/13	MS2,MW		
Date Sampled Star	rt	Date Sampled End	Date	Received	Date Reported	Date Revisi	on Reported	Analyst		
	COMP	OSITION					PROPERTIES			
			1. A. I.							
Component	Mole Fraction As Rec'd	ppm (v/v)	δ ¹³ C ⁰ / ₀₀	Calculate	ed Mole Weight ture Free as Sampled	Calculated G	ross Heating Value (MJ/m3) 325 kPa & 15°C		 Calculated Relative I Relative to Ari i 	Densities
		PP		17	2		20.52		0.509	0
				17.	Total		GPA 2172		Moisture Free as Sa	noled
H2	Trace				, un		Sinche			, pico
He	Trace			1.						
02	0.0362				On Site		lydrogen Sulphide	In La	b	
N2	0.1515									
CO2	0.0021		-15.40		The Participant of the Participa	Transfer (market)	<1	44.44	T.4.0+ (
H2S	0.0000			Gast	ec (ppm v/v)	i utwier (mole %)	Gastec (ppm v/v)	Lutwier (mole%)	
				Onsite	analysis is required for acc	curate source H2S co	ntent.			
C1	0.8102		-65.66	H2S de	egrades variably in all samp	ple containers and is	also matrix dependant.			
C2	0.0000		-40.62		man num	Service and		Jaco cont		
C3	0.0000			δ 13C %=	[(13C / 12C _ ample -	- ¹³ C / ¹² C _{stan}	tand) / (¹³ C / ¹² C _{s kand}	lani)] * 100	0	
	1.25					1	NTERPRETATION			
IC4	0.0000									
NC4	0.0000									
105	0.0000									
NOF	0.0000									
NCS	0.0000									
C6	0.0000									
C7+	0.0000									
TOTAL	1,0000			OC Check St	d # 7633/1651	Date 2006/	11/06 OC Page	sed Yes		
1.4.0.4				GO CHECK SU	a			360 163		
				** Inf	formation not supplied by	client data derive	d from LSD information		Results relate or	nly to items teste

Remarks:

CALGARY 2021-41 Avenue N.E., Calgary,Canada T2E 6P2 Tel: (403) 291-3077 Fax (403) 291-9458 EDMONTON 9331-48 Street, Edmonton, Canada T6B 2R4 Tel: (780) 468-3500 Fax (780) 468-3560 GRANDE PRAIRIE #105, 8502 - 112 Street, Grande Prairie, Canada T8V 5X4 Tei; (780) 532-0227 Fax (780) 532-0288 STETTLER Bay 6, 4705 - 42 Street, Stettler, Canada T0C2L0 Tei; (403) 742-1107 Fax (403) 742-0170

CARBON ISOTOPE ANALYSIS

						A6528	12:D49395
ALBERTA ENVIRONMENT	Sample Point I.E	D. Client I.D.		Meler Numbe	ər.	Laboratory	(Number
Operator Name				NTS (BC Su	rvey)	Well ID	
ALBERTA ENVIRONMENT S	GNER			CK		ALBERTA EN	VIRO.
Well Name				Name of Sampler		Company	
1000			GRAB			Tedlar Bag	
Field or Area	Pool or Zone	0.1	Sample Point			Container Identity	Percent Full
Test Recovery	Interval 1 In	terval 2 — Interval 3 —	Ē	evations (m)	Sample Gathering Poin	ht	Solution Gas
Test Type No: Multiple Recovery	rom; To:		KB	GRD	Well Fluid Status	Wel	l Status Mode
Production Rates		- Gauge Pressures kPa	Temp	perature °C	Well Status Type	Wel	1 Туре
Water m3/d Oil m3/d Ga	s 1000m3/d Source	e As Received	Source	As Received	Gas or Condensate Pro	oject Lice	nce No.
2006/11/02 16:26		2006/11/06	2006/11/13	2006/11/1	3	MS2,MW	
Date Sampled Start Date	Sampled End	Date Received	Date Reported	Date Revision R	Reported	Analyst	
PARAMETER DESCRIPT	ION	Result	unit		VMV Code		MDL
Air Free As Received							
Mole Fraction Cyclopentar Mole Fraction n-Hexane Mole Fraction Methylcyclo Mole Fraction Benzene Mole Fraction Cyclohexani Mole Fraction 2,2,4 Trimet Mole Fraction Methycyclof Mole Fraction Toluene Mole Fraction Ethylbenzer Mole Fraction m& p-Xylene Mole Fraction 0-Xylene Mole Fraction 1,2,4 Trimet Physical Properties	ne pentane hylpentane (TMP) nexane ne e hylbenzene (TMB)	<0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001	mole/mole mole/mole mole/mole mole/mole mole/mole mole/mole mole/mole mole/mole mole/mole				.00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001
Calculated pPc: Acid Gas Calculated pTc: Acid Gas Calculated pPc: As Sampl Calculated pTc: As Sample	Free Free ed ed	4249.5 173.9 4256.1 174.2	kPa °K kPa °K				0.1 0.1 0.1 0.1
Volume Fraction Volume Fraction Cyclopen Volume Fraction n-Hexane Volume Fraction Methylcy Volume Fraction Benzene Volume Fraction Cyclohex Volume Fraction 2,2,4 Trin Volume Fraction 70luene Volume Fraction Toluene Volume Fraction Ethylbenz Volume Fraction & p-Xy Volume Fraction 0-Xylene Volume Fraction 1,2,4 Trin	tane clopentane ane nethylpentane (TM lohexane zene lene hethylbenzene (TM	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3				0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
		** Information n	ot supplied by client da	ta derived from LSD info	rmation	R	esults relate only to items tested

Remarks:

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T06-38

					C	lient: K	naus		
Sample No:		Grou	p Sample No:	Site	Descrip/Com	nment: S	igner Wate	r Well	
Station No:			Project No:						
Agency:	34	Samp Type:	SampMatrix:	Collection:	Samp	Date:	2-Nov-06 T	ime: 1627 S	amplers ID:
SubGroups	FILE	VMV	NAME		ConcRpt	MDL	ConcRpt	Unit InjDat	e
				*					
G_C1C4									
	C3850		Ethane		21.2		1 ppmv	8-Nov	-06
	C3850		Ethylene		0.0		1 ppmv	8 - Nov	-06
G_TCD									
	G3850		Carbon dioxide		2390.0	300.	0 ppm	8-Nov	-06
	G3850		Methane		739000.0	300.	0 ppm	8-Nov	-06
	G3850		Nitrogen		264000.0	300.	0 ppm	8-Nov	-06

[ARC_Remarks] : WGas and VOC Screen

SubGroups

DG_C1C4 and DG_TCD - Disolved Gas in water sample

G_C1C4 and G_TCD - free Gas from canister

Business Unit Manager	Contact Person:	Grant Prill		
Environmental Monitoring		Environment	al Monito	oring
Alberta Research Council		Alberta Res	earch Cou	ncil
Vegreville, Alberta		Vegreville,	Alberta	T9C 1T4
T9C 1T4		T9C 1T4		
			(780)	632-8455
	Business Unit Manager Environmental Monitoring Alberta Research Council Vegreville, Alberta T9C 1T4	Business Unit Manager Contact Person: Environmental Monitoring Alberta Research Council Vegreville, Alberta T9C 1T4	Business Unit ManagerContact Person: Grant PrillEnvironmental MonitoringEnvironmentAlberta Research CouncilAlberta ResVegreville, AlbertaVegreville,T9C 1T4T9C 1T4	Business Unit Manager Contact Person: Grant Prill Environmental Monitoring Environmental Monitor Alberta Research Council Alberta Research Cou Vegreville, Alberta Vegreville, Alberta T9C 1T4 T9C 1T4

CARBON ISOTOPE ANALYSIS

								A	52812:D49356	5
ALBERTA E	NVIRONMEN	Sa	mple Point I.D.	Client I.D.		Meter Nur	nber	La	boratory Number	
Operator Name	NUNCINCLU					LSD		Well ID	C & 3	
ALBERTA E	NVIRONMEN	T SIGNER				CK		ALBERT	A ENVIRO.	
Well Name						Name of Samp	ler	Company		
					GRAB			Tedlar Ba	ig	_
Field or Area			Pool or Zone		Sample Point			Container Ider	itity	Percent Full
Test Recovery		Interval	1 — Intérval 2 –	Interval 3	Ele	ovations (m)	Sample Gathering Pol	nt.	Solution	Gas
Test Tupe No	Hullinia Deservation	To								
rest type (vo.	Multiple Recovery			Contract of the second	KB	GRD	N 0.000000		W 0.000000	
	— Production Rates		Gauge P	ressures kPa ———	Tomp	erature °C	GPS		GPS	
Water m3/d	Oil m3/d	Gas 1000m3/d	Source	As Received	Source	As Received	Well Fluid Type		Licence No.	
2006/11/02	16:28		200	6/11/06	2006/11/13	2006/11/	/13	MS2,MW		
Date Sampled Star	1	Date Sampled End	Date	Received	Date Reported	Date Revisio	n Reported	Analyst		
-	COMP	OSITION					PROPERTIES			
Component	Mole Fraction	1	13 -01	Calcul	ated Mole Weight	Calculated Gr	oss Heating Value (MJ/m3)		- Calculated Relative (Densilies
Component	As Rec'd	ppm (v/v)	Sin C 100	Mo	isture Free as Sampled	@ 101.3	325 kPa & 15°C		Relative to Ari (⊉15°C
				17	7.2	3	1.77		0.592	
H2	Trace			-	Total		GPA 2172		Moisture Free as Sar	npled
He	Trace									
02	0.0284					— н	lydrogen Sulphide			
N2	0.1263				On Site			In La	0	
CO2	0.0022		-16.66				<1			
U02	0.0022		-10.00	Ga	astec (ppm v/v)	Tutwiler (mole%)	Gastec (ppm v/v)	Tutwiler (mole%)	
1120	0.0000									
C1	0.9421		68.00	Onsit	e analysis is required for ac	curate source H2S cor	ntent			
01	0.6431		-00.09	H2S	degrades variably in all sam	ple containers and is a	also matrix dependant.			
02	0.0000		-40.11	5 130 01 -	- 1/130 / 120	130 / 120	1/130/120	N * 100	1	
03	0.0000		P. 10	0 0 100-	- [(C) Cranhie	- C/ Cristervi		iani Al TUUI		
104	0.0000		N							
104	0.0000									
NC4	0.0000									
IC5	0.0000									
NC5	0.0000									
C6	0.0000									
C7+	0.0000			1						
TOTAL	1.0000			QC Check S	Std # 7633/1651	Date 2006/	11/06 QC Pas	sed Yes		
	100 C 100 C 100							10 10 <u>10 1</u>		
		1.1			information not supplied b	y client data derived	d from LSD information		Results relate of	nly to items tested

Remarks:

CALGARY 2021-41 Avenue N.E., Calgary,Canada T2E 6P2 Tel: (403) 291-3077 Fax (403) 291-9468 EDMONTON 9331-48 Street, Edmonton, Canada T6B 2R4 Tel: (780) 468-3500 Fax (780) 468-3560 GRANDE PRAIRIE #105, 8502 - 112 Street, Grande Prairie, Canada T8V 5X4 Tel: (780) 532-0227 Fax (780) 532-028 STETLER Bay 6, 4705 - 42 Street, Stettler, Canada T0C2L0 Tel: (403) 742-1107 Fax (403) 742-0170

CARBON ISOTOPE ANALYSIS

							A652812:D49356	3
ALBERTA ENVIRONME	Sa NT	mple Point I.D.	Client I.D.		Meler Num	ber	Laboratory Number	
Operator Name ALBERTA ENVIRONMEN	NT SIGNER				NTS (BC S	urvey)	ALBERTA ENVIRO.	
Well Name	11.11.11.11.11.1				Name of Sample	r	Company	
				GRAB			Tedlar Bag	
Field or Area		Pool or Zone		Sample Point			Container Identity	Percent Full
Test Recovery	Interval	1 — Interva	il 2 —— Interval 3 —	El	evations (m) —	Sample Gathering Point	t Solution	Gas
Test Type No: Multiple Recovery	To:			KB	GRD	Well Fluid Status	Well Status Mode	
Production Rate	\$	Ga	uge Pressures kPa	Temp	berature "C	Well Status Type	Well Type	
Water m3/d Oil m3/d	Gas 1000m3/d	Source	As Received	Source	As Received	Gas or Condensale Pro	ject Licence No.	
2006/11/02 16:28			2006/11/06	2006/11/13	2006/11/1	3	MS2,MW	
Date Sampled Start	Date Sampled End		Date Received	Date Reported	Date Revision	Reported	Analyst	
PARAMETER DESCR	RIPTION		Result	unit		VMV Code	MDL	
Air Free As Received	I.							
Mole Fraction Cyclope Mole Fraction n-Hexar Mole Fraction Methylc Mole Fraction Benzen Mole Fraction Cyclohe Mole Fraction 2,2,4 Tr Mole Fraction Methycy Mole Fraction Toluene Mole Fraction Toluene Mole Fraction m& p-X Mole Fraction o-Xylen Mole Fraction 1,2,4 Tr Physical Properties Calculated pPc: Acid 0	entane ne syclopentane e exane imethylpentane yclohexane nzene (ylene e imethylbenzene Gas Free	• (TMP) • (TMB)	<0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001	mole/mole mole/mole mole/mole mole/mole mole/mole mole/mole mole/mole mole/mole mole/mole			0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	
Calculated pTc: Acid C Calculated pPc: As Sa Calculated pTc: As Sa	Gas Free ampled ampled		177.0 4322.8 177.3	°K kPa °K			0.1 0.1 0.1	
Volume Fraction								
Volume Fraction Cycle Volume Fraction n-He Volume Fraction Meth Volume Fraction Benz Volume Fraction Cycle Volume Fraction 2,2,4 Volume Fraction Meth Volume Fraction Tolue Volume Fraction Ethyl Volume Fraction m & p Volume Fraction n -Xyl Volume Fraction 1,2,4	opentane xane ylcyclopentane ene Trimethylpenta ycyclohexane ene benzene o-Xylene ene ene Trimethylbenze	nne (TMP) ene (TMB)	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3 ml/m3			0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	
			* Information of	t supplied by client dat	a derived from I SD info	ormation	Results relate on	v to items tested

Remarks:

Maxxam Job #: A652812 Report Date: 2006/11/13 ALBERTA ENVIRONMENT Client Project #: ROSEBUD (PRE-CLEAN) Site Reference: SIGNER Sampler Initials:

RESULTS OF CHEMICAL ANALYSES OF GAS

Maxxam ID		D49356	D49395	
Sampling Date	- 1	11/2/2006 16:28	11/2/2006 16:26	Y
COC Number		149634	149634	1.2.2.2
	Units	ALBERTA ENVIRONMENT SIGNER	ALBERTA ENVIRONMENT SIGNER	RDL
Parameter				
PPM Hexanes (C6)	ppm	0	0	N/A
Temporary				
PPM Heptanes Plus	ppm	0	0	N/A
Air Free As Received				
Mole Fraction Cyclopentane	mole/mole	< 0.00001	<0.00001	0.00001
Mole Fraction Hydrogen	mole/mole	TRACE	TRACE	0.0001
Mole Fraction Helium	mole/mole	TRACE	TRACE	0.0001
Mole Fraction n-Hexane	mole/mole	<0.00001	<0.00001	0.00001
Mole Fraction Methylcyclopentane	mole/mole	< 0.00001	<0.00001	0.00001
Mole Fraction Benzene	mole/mole	<0.00001	<0.00001	0.00001
Mole Fraction Oxygen	mole/mole	0.0284	0.0362	0.0001
Mole Fraction Cyclohexane	mole/mole	< 0.00001	<0.00001	0.00001
Mole Fraction Nitrogen	mole/mole	0.1263	0.1515	0.0001
Mole Fraction 2,2,4 Trimethylpentane (TMP)	mole/mole	< 0.00001	<0.00001	0.00001
Mole Fraction Carbon Dioxide	mole/mole	0.0022	0.0021	0.0001
Mole Fraction Hydrogen Sulphide (H2S)	mole/mole	<0.0001	<0.0001	0.0001
Mole Fraction Methycyclohexane	mole/mole	<0.00001	<0.00001	0.00001
Mole Fraction Methane (C1)	mole/mole	0.8431	0.8102	0.0001
Mole Fraction Toluene	mole/mole	<0.00001	<0.00001	0.00001
Mole Fraction Ethane (C2)	mole/mole	<0.0001	<0.0001	0.0001
Mole Fraction Ethylbenzene	mole/mole	<0.00001	<0.00001	0.00001
Mole Fraction m & p-Xylene	mole/mole	<0.00001	<0.00001	0.00001
Mole Fraction Propane (C3)	mole/mole	<0.0001	<0.0001	0.0001
Mole Fraction Isobutane	mole/mole	<0.0001	<0.0001	0.0001
Mole Fraction o-Xylene	mole/mole	<0.00001	<0.00001	0.00001
Mole Fraction 1,2,4 Trimethylbenzene (TMB)	mole/mole	<0.00001	<0.00001	0.00001
Mole Fraction n-Butane	mole/mole	<0.0001	< 0.0001	0.0001

Mole Fraction Isopentane	mole/mole	<0.0001	<0.0001	0.0001
Mole Fraction n-Pentane	mole/mole	<0.0001	<0.0001	0.0001
Mole Fraction Hexanes (C6)	mole/mole	<0.0001	<0.0001	0.0001
Mole Fraction Total Fraction	mole/mole	1	1	0.0001
Mole Fraction Heptanes Plus	mole/mole	<0.0001	<0.0001	0.0001
Carbon Isotope Abundance				
Carbon Isotope Carbon Dioxide	PDB	-16.66	-15.4	N/A
Carbon Isotope Methane (C1)	PDB	-68.09	-65.66	N/A
Carbon Isotope Ethane (C2)	PDB	-40.11	-40.62	N/A
GAS				
In Laboratory Hydrogen Sulphide (H2S)	ppm (mole)	<1	<1	1
Physical Properties				
Calculated Gross Heating Value As Sampled	Mj/m3	31.77	30.53	0.01
Calculated pPc: Acid Gas Free	kPa	4316	4249.5	0.1
Calculated pTc: Acid Gas Free	°K	177	173.9	0.1
Calculated QC Check Std#	N/A	7633/1651	7633/1651	N/A
Calculated Relative Density Moisture Free	N/A	0.592	0.598	0.001
Calculated pPc: As Sampled	kPa	4322.8	4256.1	0.1
Calculated pTc: As Sampled	°K	177.3	174.2	0.1
Calculated Molecular Weight Total	g/mole	17.2	17.3	0.1
Volume Fraction	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			
Volume Fraction Cyclopentane	ml/m3	<0.01	<0.01	0.01
Volume Fraction n-Hexane	ml/m3	<0.01	<0.01	0.01
Volume Fraction Methylcyclopentane	ml/m3	<0.01	<0.01	0.01
Volume Fraction Benzene	ml/m3	<0.01	<0.01	0.01
Volume Fraction Cyclohexane	ml/m3	<0.01	<0.01	0.01
Volume Fraction 2,2,4 Trimethylpentane (TMP)	ml/m3	<0.01	<0.01	0.01
Volume Fraction Methycyclohexane	ml/m3	<0.01	<0.01	0.01
Volume Fraction Toluene	ml/m3	<0.01	<0.01	0.01
Volume Fraction Ethylbenzene	ml/m3	<0.01	<0.01	0.01
Volume Fraction m & p-Xylene	ml/m3	<0.01	<0.01	0.01
Volume Fraction o-Xylene	ml/m3	<0.01	<0.01	0.01
Volume Fraction 1,2,4 Trimethylbenzene (TMB)	ml/m3	<0.01	<0.01	0.01

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T06-3849

					C	lient:	Knau	S		
Sample No:		Grou	p Sample No:	Site	Descrip/Co	mment:	Dome	stic Water W	Well Samples -	Signer (2)
Station No:			Project No:							
Agency:	34	Samp Type:	SampMatrix:	Collection:	Samp	Date:	2 - N	ov-06 Time:	1631 Sample:	s ID:
SubGroups	FILE	VMV	NAME		ConcRpt	MDL		ConcRptUnit	InjDate	
		55555						*********		
G_C1C4										
	C3849		Ethane		13.4		.1	ppmv	8-Nov-06	
	C3849		Ethylene		0.0		.1	ppmv	8-Nov-06	
G_TCD										
	G3849		Carbon dioxide		1800.0	30	0.0	ppm	8-Nov-06	
	G3849		Methane		932000.0	300	0.0	ppm	8-Nov-06	
	G3849		Nitrogen		98000.0	30	0.0	ppm	8-Nov-06	

[ARC Remarks]: WGas and VOC Screen

SubGroups					
DG_C1C4 and DG_TCD - Disol	ved Gas in water sample				
G_C1C4 and G_TCD - free	Gas from canister				
Certified For: Yogesh Kumar,	Business Unit Manager	Contact Person:	Grant Prill		
Ву:	Environmental Monitoring Alberta Research Council		Environment Alberta Res	al Monitc earch Cou	ncil
	Vegreville, Alberta T9C 1T4		Vegreville, T9C 1T4	Alberta	T9C 1T4
Date: 15-Nov-06				(780)	632-8455

Alberta Research Council Environmental Monitoring Vegreville, Alberta

Tabular Data Report

page 1

			SmpDate: 2-Nov-06	5 Time: 1631 By: CK	Ma	trix: SI	rco
			Canister #: 1925	User Sample No:			
	Sub	Group	vozl4	Concentration			
ILE	RT	MQ	NAME	vdqq	MW	MolFormul	a CAS
		-					
	Analysis	Date	: 09-NOV-2006 12:32				
3849	0.00	Т	Freon-12	0.0	121	CC12F2	75-71-8
3849	0.00	т	Chloromethane	0.0	50	CH3C1	74-87-3
3849	0.00	Τ	Freon-114	0.0	171	C2C12F4	76-14-2
3849	0,00	Т	Vinyl chloride	α.ο	63	C2H3C1	75-01-4
3849	0.00	т	trans-2-Butene	0.0	56	C4H8	624-64-6
3849	0.00	т	cis-2-Butene	0.0	56	C4H8	590-18-1
3849	0.00	т	Bromomethane	0.0	95	CH3Br	74-83-9
3849	0.00	Т	Chloroethane	0.0	65	C2H5C1	75-00-3
3849	0-00	т	3-Methyl-1-butene	0.0	70	C5H10	563-45-1
3849	0.00	Т	Freon-11	0.0	137	CC13F	75-69-4
3849	0.00	Т	1-Pentene	0.0	70	C5H10	109-67-1
3849	0.00	Т	Isoprene	0.0	68	C5H8	78-79-5
3849	0.00	Т	trans-2-Pentene	0.0	70	C5H10	646-04-8
3849	0.00	т	cis-2-Pentene	0.0	70	C5H10	627-20-3
3849	0.00	т	1,1-Dichloroethylene	0.0	96	C2H2C12	75-35-4
3849	0,00	Ť	2-Methyl-2-butene	0.0	70	C5H10	563-46-2
3849	0.00	т	Freon-113	0.0	187	C2C13F3	76-13-1
3849	0.00	т	Methylene chloride	0.0	84	CH2C12	75-09-2
3849	0.00	т	Cyclopentene	0.0	68	C5H8	142-29-0
3849	0.00	Т	4-Methyl-1-pentene	0 = 0	84	C6H12	691-37-2
3849	0.00	т	Cyclopentane	0.0	70	C5H10	287-92-3
3849	0.00	т	1,1-Dichloroethane	0.0	98	C2H4C12	75-34-3
3849	0.00	т	cis-2-Hexene	0.0	84	C6H12	7688-21-3
3849	0.00	Т	cis-1,2-Dichloroethylene	0.0	97	C2H2C12	156-59-4
3849	0.00	т	trans-2-Hexene	0.0	84	C6H12	4050-45-7
3849	0.00	т	Chloroform	0.0	119	CHC13	67-66-3
3849	0.00	Т	2,4-Dimethylpentane	0.0	100	C7H16	108-08-7
3849	0.00	т	1,1,1-Trichloroethane	0.0	132	C2H3C13	71-55-6
3849	0.00	Т	1,2-Dichloroethane	0.0	98	C2H4C12	107-06-2
3849	0.00	т	Carbon tetrachloride	0.0	154	CC14	56-23-5
3849	0.00	т	2-Methylhexane	0 - 0	100	C7H16	591-76-4
3849	0.00	т	2,3-Dimethylpentane	0_0	100	C7H16	565-59-3
3849	0.00	Т	3-Methylhexane	0.0	100	C7H16	589-34-4
3849	0.00	т	1,2-Dichloropropane	0.0	113	C3H6C12	78-87-5
3849	0.00	т	Trichloroethylene	0.0	131	C2HC13	79-01-6
3849	0.00	т	Methylcyclohexane	0.0	98	C7H14	108-87-2
3849	0.00	т	cis-1,3-Dichloropropylene	0.0	111	C3H4C12	542-75-6
3849	0.00	т	2-Methylheptane	0.0	114	C8H18	592-27-8
3849	0.00	т	trans-1,3-Dichloropropylene	0.0	111	C3H4C12	542-75-6
3849	0.00	Т	3-Methylheptane	0.0	114	C8H18	589-81-1
3849	0.00	T	trans-1,2-Dichloroethylene	0.0	97	C2H2C12	156-60-5
04951	0:00	т	1.1.2-Trichloroechane	α	132	C2H3C13	79-00-5

Sample No: T06-3849 Comments: Domestic Water Well Samples - Signer (2) SmpDate: 2-Nov-06 Time: 1631 By: CK Matrix: SILCO Canister #: 1925 User Sample No:

	Sub	Group	vozl4	Concentration			
FILE	RT	MQ	NAME	ppbv	MW	MolFormula	CAS
	Analysis	Date	: 09-NOV-2006 12:32				
V3849	0.00	т	1,2-Dibromoethane	0.0	188	C2H4Br2	106-93-4
V3849	0.00	т	Tetrachloroethylene	0.0	166	C2C14	127-18-4
V3849	0.00	T	Chlorobenzene	0.0	113	C6H5Cl	108-90-7
V3849	0.00	т	Styrene	0.0	104	CSH8	100-42-5
V3849	0.00	т	1,1,2,2-Tetrachloroethane	0.0	166	C2H2C14	79-34-5
V3849	0.00	т	n-Propylbenzene	0.0	120	C9H12	103-65-1
V3849	0.00	т	1,3,5-Trimethylbenzene	0.0	120	C9H12	108-67-8
V3849	0.00	т	beta Pinène	0.0	136	C10H16	18172-67-3
V3849	0.00	т	1,2,4-Trimethylbenzene	0.0	120	C9H12	95-63-6
V3849	0.00	т	1,3-Dichlorobenzene	0.0	147	C6H4C12	541-73-1
V3849	0.00	T	1,4-Dichlorobenzene	0.0	147	C6H4C12	106-46-7
V3849	0.00	T	1,2-Dichlorobenzene	0.0	146	C6H4C12	95-50-1
V3849	0.00	Т	1,2,4-Trichlorobenzene	0.0	180	C6H3C13	120-82-1
V3849	0.00	T	Hexachlorobutadiene	0.0	261	C4C16	87-68-3
V3849	2.54	90	Sulfur dioxide(DOT)	3.1	64	025	7446-09-5
V3849	2.58	91	Cyclopropane	30.8	42	СЗН6	75-19-4
V3849	2.67	т	Isobutane	15.4	58	C4H10	75-28-5
V3849	2.83	T	1-Butene	7.3	56	C4H8	106-98-9
V3849	2.87	т	Butane	8,3	58	C4H10	106-97-8
V3849	2.97	78	Propane, 2,2-dimethyl-	19.1	72	C5H12	463-82-1
V3849	3.55	т	Isopentane	9.8	72	C5H12	78-78-4
V3849	3.88	т	Pentane	1.6	72	C5H12	109-66-0
V3849	4.34	т	2,2-Dimethylbutane	1.6	86	C6H14	75-83-2
V3849	4.74	25	3-Methylenecyclohexene	1.5	94	C7H10	13407-18-6
V3849	4.80	Ŧ	2,3-Dimethylbutane	1.3	86	C6H14	79-29-8
V3849	4.86	т	2-Methylpentane	. 9	86	C6H14	107-83-5
V3849	5.09	т	3-Methylpentane	1.6	86	C6H14	96 - 14 - 0
V3849	5.24	т	2-Methyl-1-pentene	4.8	84	C6H12	763-29-1
V3849	5.37	т	Hexane	10.7	86	C6H14	110-54-3
V3849	5,86	т	Methylcyclopentane	1.7	84	C6H12	96-37-7
V3849	6.44	т	Cyclohexane	.3	84	C6H12	110-82-7
V3849	6.45	Т	Benzene	.5	78	Сене	71-43-2
V3849	6.83	T	2,2,4-Trimethylpentane	.5	114	C8H18	540-84-1
V3849	6.89	76	1-Heptene	1.1	98	C7H14	592-41-7
V3849	7.03	т	Heptane	. 7	100	C7H16	142 - 82 - 5
V3849	7.24	52	1-Pentene, 2,4,4-trimethyl-	1.2	112	C8H16	107-39-1
V3849	7.45	62	Cyclohexane, methyl-	. 6	98	C7H14	108-87-2
V3849	7.86	т	2,3,4-Trimethylpentane	.2	114	C8H18	565-75-3
V3849	8.17	T	Toluene	1.8	92	C7H8	108-88-3
V3849	8.48	91	trans-1-Butyl-2-methylcyclopropane	8.0	112	C8H16	38851-70-6
V3849	8.57	76	4-Octene, (E)-	- 8	112	C8H16	14850-23-8
V3849	8.61	Т	Octane	8.0	114	C8H18	111-65-9
V3849	8.77	83	ETHYL-2 HEXENE-1	3,1	112	C8H16	37266-23-2
V3849	9.40	I	Chlorobenzene-d5	18.0	112	C6D5C1	3114-55-4
V3849	9.64	т	Ethyl benzene	-7	106	C8H10	100-41-4
V3849	9.75	т	m,p-Xylene	1.2	106	C8H10	108-38-3 / 106-42-3
V3849	10.08	т	Nonane	.5	128	C9H20	111-84-2
V3849	10.12	т	o-Xylene	1.3	106	C8H10	95-47-6
V3849	10.56	т	Isopropylbenzene	.3	120	C9H12	98-82-8
V3849	10.72	Т	alpha Pinene	.5	136	C10H16	80-56-8

Sample No: T06-3849	Comments:	Domestic W	Water Well Sam	mples - Signer	(2)	
	SmpDate:	2-Nov-06	Time: 1631	Ву: СК	Matrix:	SILCO
	Canister #:	1925	User Sample	No:		

	Sub	Group	: vozl4	Concentration			
FILE	RT	MQ	NAME	ppbv	MW	MolFormula	CAS
Sharran					in the		
	Analysis	Date	: 09-NOV-2006 12:32				
V3849	10.78	38	4-Methylcyclohexene		.4 96	6 C7H12	0-00-0
V3849	10.97	27	2-Decene, (Z) -		.5 140	C10H20	20348-51-0
V3849	11.07	68	cis-4-Decene	3	.0 140	C10H20	19398-88-0
V3849	11.24	47	4-Nonene, 5-methyl-	6	.0 140	C10H20	15918-07-7
V3849	11.33	96	1-Decene	4	.0 140	C10H20	872-05-9
V3849	11.38	95	5-Decene, (E)-	4	.3 140	C10H20	7433-56-9
V3849	11.44	53	Tridecane		.9 184	C13H28	629-50-5
V3849	11.62	72	4-methylene-5-hexen-2-ol	5	.1 11:	C7H12O	71885-98-8
			sum:	193			

Sample No: T06-3850 Comments: Signer Water Well

SmpDate: 2-Nov-06 Time: 1627 By: CK/LM Matrix: SILCO Canister #: 2132 User Sample No:

	Sub	Group	p: voz14	Concentration			
FILE	RT	MQ	NAME	vdqq	MW	MolFormula	CAS
	Analysis	Date	2: 09-NOV-2006 13:07				
V3850	0.00	Т	Freon-12	0.0	121	CC12F2	75-71-8
V3850	0,00	Т	Chloromethane	0.0	50	CH3C1	74-87-3
V3850	0.00	Т	Freon-114	0 - 0	171	C2C12F4	76-14-2
V3850	0.00	Т	Vinyl chloride	0.0	63	C2H3C1	75-01-4
V3850	0.00	T	trans-2-Butene	0.0	56	C4H8	624-64-6
V3850	0.00	т	cis-2-Butene	0 - 0	56	C4H8	590-18-1
V3850	0.00	т	Bromomethane	0.0	95	CH3Br	74-83-9
V3850	0.00	т	Chloroethane	0.0	65	C2H5C1	75-00-3
V3850	0.00	T	3-Methyl-1-butene	0.0	70	C5H10	563-45-1
V3850	0.00	T	Freon-11	0.0	137	CC13F	75-69-4
V3850	0.00	Т	1-Pentene	0.0	70	C5H10	109-67-1
V3850	0.00	T	Isoprene	0 - 0	68	C5H8	78-79-5
V3850	0.00	Т	trans-2-Pentene	0.0	70	C5H10	646-04-8
V3850	0.00	Т	cis-2-Pentene	0.0	70	C5H10	627-20-3
V3850	0.00	т	1,1-Dichloroethylene	0.0	96	C2H2C12	75-35-4
V3850	0.00	Т	2-Methyl-2-butene	0'-0	70	C5H10	563-46-2
V3850	0.00	Т	Freon-113	0.0	187	C2C13F3	76-13-1
V3850	0.00	т	Methylene chloride	0.0	84	CH2C12	75-09-2
V3850	0.00	Т	Cyclopentene	0.0	68	C5H8	142-29-0
V3850	0.00	Т	4-Methyl-1-pentene	0.0	84	C6H12	691-37-2
V3850	0.00	Т	Cyclopentane	0.0	70	C5H10	287-92-3
V3850	0.00	Т	1,1-Dichloroethane	0.0	98	C2H4C12	75-34-3
V3850	0.00	Т	cis-2-Hexene	0.0	84	C6H12	7688-21-3
V3850	0.00	Т	cis-1,2-Dichloroethylene	0.0	97	C2H2C12	156-59-4
V3850	0.00	Т	trans-2-Hexene	0.0	8.4	C6H12	4050-45-7
V3850	0.00	т	Chloroform	0.0	119	CHC13	67-66-3
V3850	0.00	т	2,4-Dimethylpentane	0.0	100	C7H16	108-08-7
V3850	0,00	т	1,1,1-Trichloroethane	0.0	132	C2H3C13	71-55-6
V3850	0.00	T	1,2-Dichloroethane	0.0	98	C2H4C12	107-06-2
V3850	0,00	т	Carbon tetrachloride	0.0	154	CC14	56-23-5
V3850	0.00	т	2-Methylhexane	0.0	100	C7H16	591-76-4
V3850	0.00	т	2,3-Dimethylpentane	0.0	100	C7H16	565-59-3
V3850	0.00	т	3-Methylhexane	0.0	100	C7H16	589-34-4
V3850	0.00	T	1,2-Dichloropropane	0.0	113	C3H6C12	78-87-5
V3850	0.00	Т	Trichloroethylene	0.0	131	C2HC13	79-01-6
V3850	0.00	т	cis-1,3-Dichloropropylene	0.0	111	C3H4C12	542-75-6
V3850	0.00	T	2-Methylheptane	0.0	114	C8H18	592-27-8
V3850	0.00	т	trans-1,3-Dichloropropylene	0.0	111	C3H4C12	542-75-6
V3850	0.00	Т	3-Methylheptane	0.0	114	C8H18	589-81-1
V3850	0.00	т	trans-1,2-Dichloroethylene	0.0	97	C2H2C12	156-60-5
V3850	0.00	Т	1,1,2-Trichloroethane	0.0	132	C2H3C13	79-00-5
V3850	0.00	Т	1,2-Dibromoethane	0.0	188	C2H4Br2	106-93-4
V3850	0.00	Т	Tetrachloroethylene	0.0	166	C2C14	127-18-4
V3850	0.00	Т	Chlorobenzene	0.0	113	C6H5Cl	108-90-7
V3850	0.00	т	Styrene	0.0	104	C8H8	100-42-5
V3850	0.00	т	1,1,2,2-Tetrachloroethane	0.0	166	C2H2C14	79-34-5
V3850	0.00	т	n-Propylbenzene	00	120	C9H12	103-65-1
V3850	0.00	T	beta Pinene	0.0	136	C10H16	18172-67-3
V3850	0.00	T	1,2,4-Trimethylbenzene	0.0	120	C9H12	95-63-6
V3850	0.00	Т	1,3-Dichlorobenzene	0.0	147	C6H4C12	541-73-1

Sample No: T06-3850 Comments: Signer Water Well

SmpDate: 2-mov-00 Canister #: 2132 User Sample No: SmpDate: 2-Nov-06 Time: 1627 By: CK/LM Matrix: SILCO

	Sub	Group): vozl4	Concentration			
FILE	RT	MQ	NAME	ppbv	MW	MolFormula	CAS
		-					
112.050	Analysis	Date	3: 09-NOV-2006 13:07			2011/01/0	
V3850	0.00	T	1,4-Dichlorobenzene	0.0	147	C6H4C12	106-46-7
V3850	0.00	Т	1,2-Dichlorobenzene	0.0	146	C6H4C12	95-50-1
V3850	0.00	Т	1,2,4-Trichlorobenzene	0.0	180	C6H3C13	120-82-1
V3850	0.00	T	Hexachlorobutadiene	0.0	261	C4C16	87-68-3
V3850	2.54	83	Sulfur dioxide	.9	64	025	7446-09-5
V3850	2.58	91	Cyclopropane	31.0	42	C3H6	75-19-4
V3850	2.68	т	Isobutane	15.2	58	C4H10	75-28-5
V3850	2.83	т	1-Butene	12.8	56	C4H8	106-98-9
V3850	2.88	т	Butane	8.1	58	C4H10	106-97-8
V3850	2.97	78	Propane, 2,2-dimethy1-	19.2	72	C5H12	463-82-1
V3850	3.55	Т	Isopentane	9.4	72	C5H12	78-78-4
V3850	3.88	т	Pentane	1.6	72	C5H12	109-66-0
V3850	4.34	т	2,2-Dimethylbutane	1.6	86	C6H14	75-83-2
V3850	4.80	т	2,3-Dimethylbutane	1.2	86	C6H14	79-29-8
V3850	4.87	Т	2-Methylpentane	.7	86	C6H14	107-83-5
V3850	5.09	T	3-Methylpentane	1.6	86	C6H14	96-14-0
V3850	5.24	т	2-Methyl-1-pentene	4.3	84	C6H12	763-29-1
V3850	5.37	т	Hexane	8.4	86	C6H14	110-54-3
V3850	5.86	т	Methylcyclopentane	1.5	84	C6H12	96-37-7
V3850	6.44	т	Cyclohexane	.3	84	C6H12	110-82-7
V3850	6.45	т	Benzene	.5	78	C6H6	71-43-2
V3850	6.83	т	2,2,4-Trimethylpentane	.6	114	C8H18	540-84-1
V3850	6.89	58	1-Heptene	1.1	98	C7H14	592-41-7
V3850	7.03	т	Heptane	6	100	C7H16	142-82-5
V3850	7.23	49	1-Pentene, 2.4.4-trimethyl-	1.1	112	C8H16	107-39-1
V3850	7.45	т	Methylcyclohexane	.3	98	C7H14	108-87-2
V3850	7.85	т	2.3.4-Trimethylpentane	.2	114	C8H18	565-75-3
V3850	7 95	4.0	Pentane 2.3.3-trimethyl-	4	114	CONTO	560-21-4
V3850	8 18	T	Toluene	2.0	02	C749	108-88-2
V3850	8.48	87	1-Octane	6.9	110	CONIE	111-66-0
13850	0 55	5.0	Cycloberanone d.methyl-	5.5 E	110	CONTO	520 02 4
12050	0,10		Cyclonexanone, 4-mecnyl-		114	CONTRO	389-92-4
123050	0.01		Ventane 2 zethulene	0.7	114	Conto	111-03-9
12050	0.77	14	A NEWLY 2 DEENVIEWE	2.0	112	CSHID	1032-10-2
V3850	0.87	23	6 MEIHIL-2 PHENILINDOLE	P.	207	CISHI3N	0-00-0
12050	9,40	-	Chiorobenzene-ds	18.0	112	CODSCI	3114-55-4
V3850	9.64	1	stnyi benzene	.8	106	CSHID	100-41-4
V3850	9.75	1	m, p-xylene	1.2	106	CBHIO	108-38-3 / 106-42-3
V3850	10.08	T	Nonane	.3	128	C9H20	111-84-2
V3850	10.11	T	o-xyiene	1.3	106	C8H10	95-47-6
V3850	10.32	42	Cyclopentanemethanamine, 2-amino-	.3	114	C6H14N2	21544-02-5
V3850	10.56	Т	Isopropylbenzene	1.3	120	C9H12	98-82-8
V3850	10.72	T	alpha Pinene	. 4	136	C10H16	80-56-8
V3850	10.78	3.0	2,4-Hexadien-1-ol	.3	98	C6H100	111-28-4
V3850	10.97	12	Piperidine, 1-nitro-	.3	130	C5H10N2O2	7119-94-0
V3850	11.07	83	Cyclopentane, pentyl-	2.6	140	C10H20	3741-00-2
V3850	11.16	т	1,3,5-Trimethylbenzene	.3	120	C9H12	108-67-8
V3850	11.34	96	l-Decene	2.5	140	C10H20	872-05-9
V3850	11.38	93	cis-4-Decene	3.3	140	C10H20	19398-88-0
V3850	11.44	80	1-Decanol, 2-methyl	.7	172	C11H240	18675-24-6
V3850	11.62	87	3-Heptene, 2,2,4,6,6-pentamethyl-	4.9	168	C12H24	123-48-8

page

6

Sample No: T06-3850 Comments: Signer Water Well SmpDate: 2-Nov-06 Time: 1627 By: CK/LM Matrix: SILCO Canister #: 2132 User Sample No: SubGroup: voz14 Concentration FILE RT MQ NAME ppbv MW MolFormula CAS Analysis Date: 09-NOV-2006 13:07 181 sum:

Certified For:	Yogesh	Kumar,	Business Unit Manager	Contact Person:	Grant Prill		
			Environmental Monitoring		Environment	al Monito	oring
By:			Alberta Research Council		Alberta Res	earch Cou	incil
			Vegreville, Alberta		Vegreville,	Alberta	T9C 1T4
			T9C 1T4		T9C 1T4		
Date:						(780)	632-8455

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
						1. * · · · ·		1.0
								1
L481117-6 H								
Sampled By: NOT PROVIDED on 22-FEB-07 @ 12:30								
Matrix: WATER Total Metals								
Total Major Metals	37		0.5	ma/l		26-FEB-07	HAS	R/07055
Potassium (K)	0.9		0.1	mg/L		27-FEB-07	HAS	R497498
Magnesium (Mg)	0.4		0.1	mg/L		26-FEB-07	HAS	R497055
Sodium (Na) Iron (Fe)	431		0.005	mg/L mg/l		26-FEB-07	HAS	R497055 R497055
Manganese (Mn)	0.012		0.001	mg/L		26-FEB-07	HAS	R497055
Total Trace Metals								
Silver (Ag)	< 0.005		0.005	mg/L	1	26-FEB-07	CVM	R497347
Aluminum (AI) Boron (B)	0.03		0.01	mg/L		26-FEB-07	CVM	R497347
Barium (Ba)	0.132		0.003	mg/L		26-FEB-07	CVM	R497347
Beryllium (Be)	<0.002		0.002	mg/L	1	26-FEB-07	CVM	R497347
Cadmium (Cd)	<0.001		0.001	mg/L		26-FEB-07	CVM	R497347
Cobalt (Co)	<0.002		0.002	mg/L		26-FEB-07	CVM	R497347

Sample Detail	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
1481117-6	н								
Sampled By:	NOT PROVIDED on 22-FEB-07 @ 12:30								
Sampled by.	NOT FROVIDED ON 22-1 EB-07 @ 12.50								
Matrix:	WATER			1 1			1		
l otal Met	als			1					
Total Tra	ace Metals	0.005		0.005			26 EEP 07	CLAA	D407247
	Chromium (Cr)	0.005		0.005	mg/L		20-FEB-07	CVIVI	R49/34/
	Copper (Cu)	<0.001		0.001	mg/L	-	20-FEB-07	CVIVI	R497347
	Molybaenum (Mo)	<0.005		0.005	mg/L	1	26-FEB-07	CVM	R497347
		<0.002		0.002	mg/L		26-FEB-07	CVM	R497347
	Lead (Pb)	<0.005		0.005	mg/L		26-FEB-07	CVM	R497347
	Tin (Sn)	<0.05		0.05	mg/L		26-FEB-07	CVM	R49/34/
	Strontium (Sr)	0.108		0.002	mg/L		26-FEB-07	CVM	R497347
	Titanium (Ti)	0.002		0.001	mg/L		26-FEB-07	CVM	R497347
	Thallium (TI)	<0.05		0.05	mg/L	1	26-FEB-07	CVM	R497347
	Vanadium (V)	0.001		0.001	mg/L		26-FEB-07	CVM	R497347
	Zinc (Zn)	0.202		0.001	mg/L		26-FEB-07	CVM	R497347
	Free CO2	<1		1	mg/L		23-FEB-07	HSC/GC	R496727
VOC Ext	ended List					6			
	1,1,1,2-Tetrachloroethane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1,1,2,2-Tetrachloroethane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1,1,1-Trichloroethane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1,1,2-Trichloroethane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1.1-Dichloroethane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1.1-Dichloroethylene	<0.5		0.5	ua/L		26-FEB-07	SH	R497075
	1.1-Dichloropropene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1.2.3-Trichloropropane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1.2.3-Trichlorobenzene	<0.5	1	0.5	ug/L		26-FEB-07	SH	R497075
	1.2.4-Trichlorobenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1.2.4-Trimethylbenzene	<0.5		0.5	ug/L		26 FEB-07	CH CH	D/07075
	1.2. Dibromo 3. chloropropano	<0.5		0.5	ug/L		20-FEB-07	0H	R49/0/3
	1.2 Dibromosthono	<0.5		0.5	ug/L		20-FEB-07	OH CH	R49/0/5
	1.2 Dioblarabanzana	<0.5		0.5	ug/L	1	20-FED-07	SH	R49/0/5
	1,2-Dichloroothana	<0.5		0.5	ug/L		20-FEB-07	SH	R497075
	1,2-Dichloroemane	<0.5		0.5	ug/L		20-FEB-07	SH	R497075
	1,2-Dichloropropane	<0.5		0.5	ug/L	1	20-FEB-07	SH	R497075
	1,3,5-1 hmethylbenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1,3-Dichlorobenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1,3-Dichloropropane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	1,4-Dichlorobenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	2,2-Dichloropropane	<0.5		0.5	ug/L	ľ ()	26-FEB-07	SH	R497075
	2-Chloroethylvinyl Ether	<20		20	ug/L		26-FEB-07	SH	R497075
	2-Chlorotoluene	<20		20	ug/L		26-FEB-07	SH	R497075
	2-Hexanone	<20		20	ug/L		26-FEB-07	SH	R497075
	4-Chlorotoluene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Acetone	<20		20	ug/L		26-FEB-07	SH	R497075
	Benzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Bromobenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Bromochloromethane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Bromodichloromethane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Bromoform	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Bromomethane	<1	16 J	1	ug/L		26-FEB-07	SH	R497075
	Carbon Disulfide	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Carbon tetrachloride	<0.5		0,5	ug/L		26-FEB-07	SH	R497075
	Chlorobenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Chloroethane	<1	1 1	1	ug/L		26-FEB-07	SH	R497075
	Chloroform	<0.5		0.5	ug/L		26-FEB-07	SH	R497075

Sample Detail	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
1 404447.0									
L481117-6									
Sampled By:	NOT PROVIDED on 22-FEB-07 @ 12:30								
Matrix:	WATER								
VOC Ex	tended List								
VOU EX	Chloromethane	<1		1	ua/l		26-FEB-07	SH	R497075
	cis-1,2-Dichloroethylene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	cis-1,3-Dichloropropene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Dibromochloromethane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Dibromomethane	< 0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Dichlorodifluoromethane	<1		1	ug/L		26-FEB-07	SH	R497075
	Dichloromethane	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Ethyl Benzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Hexachlorobutadiene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Isopropylbenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Isopropyltoluene	< 0.5		0.5	ug/L		26-FEB-07	SH	R497075
	m+p-Xylenes	<1		1	ua/L		26-FEB-07	SH	R497075
	Methyl Ethyl Ketone	<20		20	ug/L		26-FEB-07	SH	R497075
	Methyl Isobutyl Ketone	<20		20	ug/L		26-FEB-07	SH	R497075
	MTBE	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Naphthalene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	n-Butylbenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	n-Propylbenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	o-Xvlene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	sec-Butvlbenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Styrene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	tert-Butvibenzene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Tetrachloroethylene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Toluene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	trans-1.2-Dichloroethylene	<0.5		0.5	ug/L		26-EEB-07	SH	R497075
	trans-1.3-Dichloropropene	<0.5		0.5	ug/L		26-FEB-07	SH	R497075
	Trichloroethylene	<0.5		0.5	ug/L	1	26-FEB-07	SH	R497075
	Trichlorofluoromethane	<1		1	ug/L		26-FEB-07	SH	R497075
	Vinvl chloride	<0.5		0.5	ug/L	1	26-FEB-07	SH	R497075
	Trihalomethanes (total)	<2.0		2	ug/L	1.1.1	26-FEB-07	SH	R497075
	Xvlenes (Total)	<1.5	1.1	1.5	ug/L	() · · · ·	26-FFB-07	SH	R497075
Surr:	1.2-Dichloroethane d4	108		51-150	%		26-FFB-07	SH	R497075
Surr:	Toluene-d8	100		72-123	%	1	26-FEB-07	SH	R497075
Surr:	4-Bromofluorobenzene	104		50-150	%		26-FEB-07	SH	R497075
Major Ion	s & Extractable Metals							on	interes a
0.0	Chloride (CI)	237		0.1	ma/L		26-FFB-07	MAT	R497460
Extracta	ble Trace Metals				ing	1	20120.01	1417 11	11451400
	Silver (Ag)	< 0.005		0.005	ma/L		27-FEB-07	CVM	R497077
	Aluminum (AI)	0.10		0.01	ma/L	1 1	27-FEB-07	CVM	R497077
	Boron (B)	0.36		0.05	ma/L	1	27-FEB-07	CVM	R497077
	Barium (Ba)	0.137		0.003	ma/L	N. 2.2	27-FEB-07	CVM	R497077
	Beryllium (Be)	< 0.001		0.001	ma/L		27-FEB-07	CVM	R497077
	Cadmium (Cd)	< 0.001		0.001	ma/L	k	27-FEB-07	CVM	R497077
	Cobalt (Co)	< 0.002	1 9	0.002	ma/L		27-FEB-07	CVM	R497077
	Chromium (Cr)	0.007		0.005	mg/L		27-FEB-07	CVM	R497077
	Copper (Cu)	0.027		0.001	ma/L	1.1	27-FEB-07	CVM	R497077
	Molybdenum (Mo)	<0.005		0.005	mg/L		27-FEB-07	CVM	R497077
	Nickel (Ni)	<0.002		0.002	mg/L		27-FEB-07	CVM	R497077
	Lead (Pb)	0.158		0.005	mg/L		27-FEB-07	CVM	R497077
	Tin (Sn)	<0.05		0.05	mg/L	A	27-FEB-07	CVM	R497077
	Strontium (Sr)	0.104		0.005	mg/L		27-FEB-07	CVM	R497077

Sample Details/Parameters		Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L481117-6	Н								1.0
Sampled By:	NOT PROVIDED on 22-FEB-07 @ 12:30								
Matrix:	WATER								
Maior Ion	s & Extractable Metals								
Extracta	ble Trace Metals			1.1					
	Titanium (Ti)	0.005		0.001	mg/L		27-FEB-07	CVM	R497077
	Thallium (TI)	<0.05		0.05	mg/L		27-FEB-07	CVM	R497077
	Vanadium (V)	0.002		0.001	mg/L		27-FEB-07	CVM	R497077
	Zinc (Zn)	0.108		0.001	mg/L		27-FEB-07	CVM	R497077
ICP meta	als for routine water			1.55			11 ·····		1000
	Calcium (Ca)	2.2		0.5	mg/L		26-FEB-07	JF	R496944
	Potassium (K)	1.8		0.1	mg/L		26-FEB-07	JF	R496944
	Magnesium (Mg)	0.3		0.1	mg/L		26-FEB-07	JF	R496944
	Sodium (Na)	486		1	mg/L		26-FEB-07	JF	R496944
Ion Bala	nce Calculation								
	Ion Balance	105			%		27-FEB-07		
	TDS (Calculated)	1140			mg/L		27-FEB-07		
	Hardness (as CaCO3)	7			mg/L		27-FEB-07		- Andrews
	Iron (Fe)-Extractable	0.333		0.005	mg/L		27-FEB-07	HAS	R497497
	Manganese (Mn)-Extractable	0.011		0.001	mg/L		27-FEB-07	HAS	R497497
	Nitrate and Nitrite as N	<0.07		0.07	mg/L		27-FEB-07		10.00
	Nitrate-N	0.07		0.05	mg/L		26-FEB-07	MAT	R497460
	Nitrite-N	<0.05		0.05	mg/L		26-FEB-07	MAT	R497460
	Sulphate (SO4)	1.2	1	0.5	mg/L		26-FEB-07	MAT	R497460
pH, Con	ductivity and Total Alkalinity						1		
A DOLLAR	pH	7.8		0.1	pН		26-FEB-07	MAT	R497161
	Conductivity (EC)	1930		3	uS/cm		26-FEB-07	MAT	R497161
	Bicarbonate (HCO3)	828		5	mg/L		26-FEB-07	MAT	R497161
	Carbonate (CO3)	<5		5	mg/L		26-FEB-07	MAT	R497161
	Hydroxide (OH)	<5		5	mg/L		26-FEB-07	MAT	R497161
	Alkalinity, Total (as CaCO3)	679		5	mg/L		26-FEB-07	MAT	R497161
Total & Fe	ecal Coliform Count-MF				1.1.1.1.1.1.1				1.
	MF - Fecal Coliforms	<1		1	CFU/100mL	24-FEB-07	25-FEB-07	BJS	R496679
	MF - Total Coliforms	10		1	CFU/100mL	24-FEB-07	25-FEB-07	BJS	R496679

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T07-1615

						VOLATILE PRIORITY POLLUTANTS	3		
Contac	t: Miller					METHOD: A102.1	TimeLi	nes (days)	
SmpNo	: 07MU080998 ProjNo :	GrpSnpNo	:			SCAN: VPP	fron s	ample date	£1
StaNo	: AB05CE1470 StaType: Gr	ound Water					Ma	x Actual	
Commen	t: Redland					Date Received : 6-Jun-07 by	: GP -	2	
Matrix	: 6					Date Extracted: 12-Jun-07 by	: SS 7	8 *	
SmpDat	e: 4-Jun-07 @ 1600	Samplers. ID1	: 195635			Date Analyzed : 12-Jun-07 by	BJS 7	8 *	
EndDat	e; @	102	¢.			Raw DataFile : V1615			
VMV_COL	DE COMPOUND NAME	ug/L	flag MDL	+\-	VMV_CO	de compound name	ug/L	flag MDL	+\-
100651	1,1,1,2-Tetrachloroethane	0.0	.1	1	95227	1,1,1-Trichloroethane	0.0	.1	
95224	1,1,2,2-Tetrachloroethane	0.0	.1	.1	95228	1,1,2-Trichloroethane	0.0	.1	
95214	1,1-Dichloroethane	0.0	.1	.1	95216	1,1-Dichloroethylene	0.0	.1	1
100645	1,1-Dichloropropylene	0.0	.1	1	100652	1,2,3-Trichlorobenzene	0.0	.1	6
100655	1,2,3-Trichloropropane	0.0	.1	.1	100653	1,2,4-Trichlorobenzene	0.0	.1	
100656	1,2,4-Trimethylbenzene	0.0	.1	.1	100640	1,2-Dibramo-3-chloropropane	0.0	.3	6.4
100641	1,2-Dibromoethane	0.0	.1	.1	95211	1,2-Dichlorobenzene	0.0	.1	
95215	1,2-Dichloroethane	0.0	,1	.1	95218	1,2-Dichloropropane	0.0	.1	66
100657	1,3,5-Trimethylbenzene	0.0	.1	.1	95212	1,3-Dichlorobenzene	0.0	.1	
100644	1,3-Dichloropropane	0.0	.1	.1	95213	1,4-Dichlorobenzene	0.0	.1	2.9
100643	2,2-Dichloropropane	0.0	.1	.1	95207	2-Chloroethoxyethylene	0.0	.4	
100638	2-Chlorotoluene	0.0	.1	.1	100639	4-Chlorotoluene	0.0	.1	14
95200	Benzene	0.0	.1	.1	100634	Bromobenzene	0.0	.1	
95201	Bromodichloromethane	0.0	.1	.1	95202	Bromoform	0.0	.5	14
95203	Bromomethane	0.0	,1	.1	95204	Carbon tetrachloride	0.0	.1	
95205	Chlorobenzene	0.0	.1	.1	95206	Chloroethane	0.0	.1	4
95208	Chloroform	0.0	.1	.1	106204	Chloromethane	0.0	.5	
95209	Dibramochloramethane	0.0	.1	.1	95210	Dibromomethane	0.0	.1	1.4
95221	Ethyl benzene	0.0	.1	.1	100646	Hexachlorobutadiene	0.0	.3	
100647	Isopropylbenzene	0.0	.1	.1	102608	MIBE	0.0	.1	
95222	Methylene chloride	0.0	2.0	.1	100649	Naphthalene	0.0	.1	8
95223	Styrene	0.0	.1	.1	100397	TRIHALOMETHANES	0.0	.1	1
95225	Tetrachloroethylene	0.0	.3	.1	95226	Toluene	0.0	.1	1
100654	Trichloroethylene	0.0	.1	.1	95229	Trichlorofluoromethane	0.0	.1	
95232	Vinyl chloride	0.0	.5	.1	100407	XYLENES	0.0	.1	13
100642	cis-1,2-Dichloroethylene	0.0	.1	.1	95219	cis-1,3-Dichloropropylene	0.0	.3	1,5
95234	m,p-Xylene	0.0	.1	.1	100637	n-Butylbenzene	0.0	.1	
100650	n-Propylbenzene	0.0	.1	.1	95233	o-Xylene	0.0	.1	
100648	p-Isopropyltoluene	0.0	.1	.1	100635	sec-Butylbenzene	0.0	.1	
100636	tert-Butylbenzene	0.0	.1	.1	95217	trans-1,2-Dichloroethylene	0.0	.1	
95220	trans-1,3-Dichloropropylen	.e 0.0	.3	.1					

Zero (0) values indicate that the analyte is not DETECTED.

MDL - Method Detection Limit

flags B - This analyte is found in the blank as well as the sample. The blank value has been subtracted.

X - Estimated value. The target compound meets the identification criteria, but is less than the MDL.

H - Compound Detected Q - Qualifying ions present but failed the ion ratio limits.

M - This value is calculated by an alternate Raw DataFile.

* - asterik following the value for Actual days taken indicates the prescribed time for that event was exceeded.

** - the Date Sampled is unknown, therefore timeline calculations can not be performed.

Certified For:	Yogesh Kumar	BUSINESS UN	TT MANAGER	mail to:	Miller	Leslie
		ANALYTICAL	CHEMISTRY		Alberta Environment	
		ALBERTA RES	EARCH COUNCIL		2nd Floor Deerfoot Square	
Date:	15-Jun-07	BAG 4000, V	EGREVILLE, ALBERTA		2938-11st NE	
Contact Person:	Grant Prill	T9C 1T4	(780) 632-8455		Calgary, Alberta	T2E 7L7

ALBERTA RESEARCH COUNCIL	ORGANICS ANALYSIS DATA SHEET	ARC SAMPLE	NUMBER:	T07-161
		VOLATILE PRIORITY POLLUTANIS	1.1	
Contact: Miller		METHOD: A102.1	TimeL	ines (d
SmpNo : 07MU080998 ProjNo : Gr	pSmpNo :	SCAN: VPP	from	sample
StaNo : AB05CE1470 StaType: Ground Wat	er	1	M	tax Act
Comment: Redland		Date Received : 6-Jun-07 by:	GP	- 2
Matrix : 6		Date Extracted: 12-Jun-07 by:	SS	7 8
SmpDate: 4-Jun-07 @ 1600 Sampler	sID1 : 195635	Date Analyzed : 12-Jun-07 by:	BJS	7 8
EndDate: @		Raw DataFile : V1615		
	ESTIMATED		_	

					CONCENTRATION
TENTATIVELY	IDENTIFIED	COMPOUNDS	11	COMMENTS	ug/L

2-Propanol, 2-Methyl

1.0

Laboratory's comments regarding this sample:

The following items regarding the sample were recorded. A Yes notation indicates a problem with the specified item. Inappropriate Sample Container - No

mpproprieto buipro contain		
Inappropriate Temperature		No
Inappropriate Headspace	- 3	No
Broken / Leaking Container		No

This sample was analyzed by GC/MS. An additional GC/FID scan may have been used for screening

purposes and to assist with quantitative data analysis.

Estimated concentrations for tentively identified compounds are calculated assuming an equal response to internal standards. * - asterik following the value for Actual days taken indicates the prescribed time for that event was exceeded.

** - the Date Sampled is unknown, therefore timeline calculations can not be performed.

Certified For: Yogesh Kuma	BUSINESS UNIT MANAGER	mail to:	Miller	Leslie
	ANALYTICAL CHEMISTRY		Alberta Environment	
-	ALBERTA RESEARCH COUNCIL		2nd Floor Deerfoot Square	
Date: 15-Jun-(BAG 4000, VEGREVILLE, ALBERIA		2938-11st NE	
Contact Person: Grant Pril	L T9C 1T4 (780) 632-8455		Calgary, Alberta	T2E 7L7

If there are any questions or concerns regarding this report, please contact the person indicated above.

Please check the mailing information and inform the lab if changes are required.

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T07-1616

				EXTRACTABLE PRIORITY POLLUTAN	TS		
Contact: Miller				METHOD: EC/3	TimeLin	nes (days))
SmpNo : 07MU080998 ProjNo :	GrpSmpNo :			SCAN: EPP	from sa	ample date	e
StaNo : AB05CE1470 StaType: Groun	nd Water		Mar	x Actual			
Comment: Redland				Date Received : 6-Jun-07 by:	GP -	2	
Matrix : 6				Date Extracted: 11-Jun-07 by:	drc 7	7 ok	
SmpDate: 4-Jun-07 @ 1600 Sa	mplersID1 : :	L95635		Date Analyzed : 12-Jun-07 by:	drc 21	8 ok	
EndDate: @	ID2 :			Raw DataFile : E1616			
VMV_CODE COMPOUND NAME	ug/L f.	lag MDL	+\-	VMV CODE COMPOUND NAME	ug/L	flag MDL	+\-
100730 1,2,4-Trichlorobenzene	0.0	.1	.1	100734 1,2-Diphenylhydrazine	0.0	.1	.1
103632 2,3,4,6-Tetrachlorophenol	0.0	.1	.2	100708 2,4,6-Trichlorophenol	0.0	.1	.2
100700 2,4-Dichlorophenol	0.0	.1	.2	100701 2,4-Dimethylphenol	0.0	.2	.2
100703 2,4-Dinitrophenol	0.0	.1	.2	100732 2,4-Dinitrotoluene	0.0	.1	.1
100733 2,6-Dinitrotoluene	0.0	.1	.1	100725 2-Chloronaphthalene	0.0	.1	.1
100699 2-Chlorophenol	0.0	.2	.2	100702 2-Methyl-4,6-dinitrophenol	0.0	.1	.2
100704 2-Nitrophenol	0.0	.1	.2	100738 4-Bromophenyl phenyl ether	0.0	.1	.1
100698 4-Chloro-3-methylphenol	0.0	.1	.2	100742 4-Chlorophenyl phenyl ether	0.0	.1	.1
100705 4-Nitrophenol	0.0	.1	.2	100709 Acenaphthene	0.0	.1	.1
100710 Acenaphthylene	0.0	.1	.1	100711 Anthracene	0.0	.1	.1
100731 Benzidine	0.0	.2	.2	100712 Benzo(a) anthracene	0-0	.1	.1
100716 Benzo(a)pyrene	0.0	.1	.2	100713 Benzo(b) fluoranthene	0.0	.1	.1
100715 Benzo(ghi)perylene	0.0	.2	.1	100714 Benzo(k) fluoranthene	0.0	.1	.1
100739 Bis(2-chloroethoxy)methane	0.0	.1	.1	100740 Bis(2-chloroethyl)ether	0.0	.1	.1
100741 Bis (2-chloroisopropyl) ether	0.0	.1	.1	100748 Bis(2-ethylhexyl)phthalate	0.0	.1	.1
100743 Butylbenzylphthalate	0.0	.1	.1	100717 Chrysene	0.0	.1	.1
100744 Di-n-butylphthalate	0.0	.1	.1	100747 Di-n-octyl phthalate	0.0	.1	.1
100718 Dibenzo (ah) anthracene	0.0	.5	.1	100745 Diethyl phthalate	0.0	.1	.1
100746 Dimethyl phthalate	0.0	.1	.1	100719 Fluoranthene	0.0	.1	.1
100720 Fluorene	0.0	.1	.1	100726 Hexachlorobenzene	0.0	.1	.1
100727 Hexachlorobutadiene	0.0	.5	.1	100728 Hexachlorocyclopentadiene	0.0	.1	.1
100729 Hexachloroethane	0.0	.5	.1	100721 Indeno (1,2,3-cd) pyrene	0.0	.1	.1
100749 Isophorone	0.0	.1	.1	100737 N-Nitroso-di-n-propylamine	0.0	.2	.1
100736 N-Nitrosodiphenylamine	0.0	.1	.1	100722 Naphthalene	0.0	.1	.1
100735 Nitrobenzene	0.0	.1	.1	100706 Pentachlorophenol	0.0	.1	.2
100723 Phenanthrene	0.0	.1.	.1	100707 Phenol	0.0	.1	.2
100724 Pyrene	0.0	.1	.1				

Zero (0) values indicate that the analyte is not DETECTED.

MDL - Method Detection Limit

flags B - This analyte is found in the blank as well as the sample. The blank value has been subtracted.

X - Estimated value. The target compound meets the identification criteria, but is less than the MDL.

H - Compound Detected Q - Qualifying ions present but failed the ion ratio limits.

M - This value is calculated by an alternate Raw DataFile.

* - asterik following the value for Actual days taken indicates the prescribed time for that event was exceeded.

** - the Date Sampled is unknown, therefore timeline calculations can not be performed.

Certified	For:	Yogesh Kumar	BUSINESS	UNIT MANAGER		mail to:	Miller	Leslie
			ANALYTICA	L CHEMISTRY			Alberta Environment	
			ALBERTA R	ESEARCH COUN	cIL		2nd Floor Deerfoot Square	
	Date:	13-Jun-07	BAG 4000,	VEGREVILLE,	ALBERTA		2938-11st NE	
Contact P	erson:	Grant Prill	T9C 1T4	(780)	632-8455		Calgary, Alberta	T2E 717

If there are any questions or concerns regarding this report, please contact the person indicated above.

Please check the mailing information and inform the lab if changes are required.

page 1 of 2

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T07-1617

	COME Hydrocarbons in Water
Contact: Miller	METHOD: 3319 TimeLines (days)
SmpNo : 07MU080998 ProjNo : GrpSmpNo :	SCAN: F123W from sample date
StaNo : AB05CE1470 StaType: Ground Water	Max Actual
Comment: Redland	Date Received : 6-Jun-07 by: GP - 2
Matrix : 6	Date Extracted: 12-Jun-07 by: SS 10 8 ok
SmpDate: 4-Jun-07 @ 1600 SamplersID1 : 195635	Date Analyzed : 12-Jun-07 by: BJS 14 8 ok
EndDate: @ID2 :	Raw DataFile : V1617

DataFile	Analyzed	VMV_CODE	COMPOUND NAME	ug/L	flag MDL +\-
V1617	12-Jun-07	106092	F1 Benzene	0.0	.1
V1617	12-Jun-07	106094	Fl Ethylbenzene	0.0	.1
V1617	12-Jun-07	106091	F1 Hydrocarbons (C6-C10) -BTEX	0.0	10.0
V1617	12-Jun-07	106093	F1 Toluene	0.0	.1
V1617	12-Jun-07	106095	F1 m,p-Xylene	0.0	.1
V1617	12-Jun-07	106096	F1 o-Xylene	0.0	.1

E1617	13-Jun-07	106097	F2 Hydrocarbons (C10-C16)	0.0	5.0
E1617	13-Jun-07	106098	F3 Hydrocarbons (C16-C34)	0.0	20.0
E1617	13-Jun-07		F4 Hydrocarbons (C34-C50)	0.0	20.0

Zero (0) values indicate that the analyte is not DETECTED.

MDL - Method Detection Limit

flags B - This analyte is found in the blank as well as the sample. The blank value has been subtracted.

X - Estimated value. The target compound meets the identification criteria, but is less than the MDL.

H - Compound Detected Q - Qualifying ions present but failed the ion ratio limits.

M - This value is calculated by an alternate Raw DataFile.

* - asterik following the value for Actual days taken indicates the prescribed time for that event was exceeded.

** - the Date Sampled is unknown, therefore timeline calculations can not be performed.

		A det de la	Leslie
TICAL CHEMISTRY		Alberta Environment	
TA RESEARCH COUNCIL		2nd Floor Deerfoot Square	
000, VEGREVILLE, ALBERTA		2938-11st NE	
r4 (780) 632-8455		Calgary, Alberta	T2E 7L7
2 L	ATICAL CHEMISTRY RTA RESEARCH COUNCIL 1000, VECREVILLE, ALBERTA .T4 (780) 632-8455	TTICAL CHEMISTRY RTA RESEARCH COUNCIL 1000, VEGREVILLE, ALBERTA .T4 (780) 632-8455	Alberta Environment RTA RESEARCH COUNCIL 2nd Floor Deerfoot Square 0000, VEGREVILLE, ALBERTA 2938-11st NE .T4 (780) 632-8455 Calgary, Alberta

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T07-1618

					C.	lient: Mi	ller		
Sample No:	07MU0	80998 Grou	p Sample No:	Site	Descrip/Con	nment: Re	dland		
Station No:	AB05C	E1470	Project No:	Canister:					
Agency:	202	Samp Type:	1 SampMatrix: 6	Collection:	1 Samp	Date: 4	-Jun-07 Time:	1600 Samplers	ID: 195635
SubGroups	FILE	VMV	NAME		ConcRpt	MDL	ConcRptUnit	InjDate	
	*****		~**********			*******			
DG_C1C4									
	W1618	106770	Butane		0.00	.01	ug/L	11-Jun-07	
	W1618	106771	Ethane		3.10	.01	ug/L	11-Jun-07	
	W1618	106772	Ethylene		0,00	.01	ug/L	11-Jun-07	
	W1618	106773	Isobutane		0.00	.01	ug/L	11-Jun-07	
	W1618	106774	Methane		26200.00	.01	ug/L	11-Jun-07	
	W1618	106775	Propane		0.00	.01	ug/L	11-Jun-07	
DG_TCD									
	L1618	106776	Carbon dioxide		402.00	1,00	mg/L	12-Jun-07	
	L1618	106777	Nitrogen		11.30	6.00	mg/L	12-Jun-07	
	L1618		Oxygen		4.34	6.00	mg/L	12-Jun-07	
G C1C4									
	C1618	106778	Butane		0.00	.05	ppmv	11-Jun-07	
	C1618	106779	Ethane		28.80	.05	ppmv	11-Jun-07	
	C1618	106780	Ethylene		0.00	.05	ppmv	11-Jun-07	
	C1618	106781	Isobutane		0.00	.05	ppmv	11-Jun-07	
	C1618	106782	Methane		847000.00	.05	ppmv	11-Jun-07	
	C1618	106783	Propane		0.00	.05	ppmv	11-Jun-07	
G_TCD									
	G1618	106784	Carbon dioxide		1940.00	300.00	ppmv	11-Jun-07	
	G1618	106785	Nitrogen		210000.00	1000.00	vmqq	11-Jun-07	
	G1618		Oxygen		39600.00	1000.00	ppmv	11-Jun-07	

[ARC_Remarks]:

SubGroups DG_C1C4 and DG_TCD - Disolved Gas in water sample G_C1C4 and G_TCD - Free Gas from canister Certified For: Yogesh Kumar, Business Unit Manager Contact Person: Grant Prill Environmental Monitoring Environmental Monitoring By: Alberta Research Council Alberta Research Council Vegreville, Alberta Vegreville, Alberta T9C 1T4 T9C 1T4 T9C 1T4 Date: 14-Jun-07 (780) 632-8455

Sample Details	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
1 512200 1	PAW WATER SIGNER WELL								
Compled Pu	HVPL on 04 HIN 07 @ 16:00								
Sampled by.	HVBL 01104-3014-07 @ 10.00								
Matrix:	WATER								
l otal Metals									
I otal Ma	Calcium (Ca)	37		0.5	mg/l		07-JUN-07	HAS	R532430
	Potassium (K)	1.0		0.1	mg/L		07-JUN-07	HAS	R532430
	Magnesium (Mg)	0.4		0.1	mg/L		07-JUN-07	HAS	R532430
	Sodium (Na)	451		1	mg/L		07-JUN-07	HAS	R532430
	Iron (Fe)	0.061		0.005	mg/L		07-JUN-07	HAS	R532430
	Manganese (Mn)	0.004		0.001	ma/L		07-JUN-07	HAS	R532430
Total Tra	ace Metals	0.001		0.007					
rotar m	Silver (Ag)	< 0.005		0.005	mg/L		08-JUN-07	MX	R533081
	Aluminum (Al)	0.07		0.01	mg/L	, ,	08-JUN-07	MX	R533081
	Boron (B)	0.33		0.05	mg/L		08-JUN-07	MX	R533081
	Barium (Ba)	0.143		0.003	mg/L		08-JUN-07	MX	R533081
	Beryllium (Be)	< 0.002		0.002	mg/L		08-JUN-07	MX	R533081
	Cadmium (Cd)	< 0.001		0.001	mg/L		08-JUN-07	MX	R533081
	Cobalt (Co)	< 0.002		0.002	mg/L		08-JUN-07	MX	R533081
	Chromium (Cr)	0.008		0.005	mg/L		08-JUN-07	MX	R533081
	Copper (Cu)	< 0.001		0.001	mg/L		08-JUN-07	MX	R533081
	Molybdenum (Mo)	< 0.005		0.005	mg/L		08-JUN-07	MX	R533081
	Nickel (Ni)	< 0.002		0.002	mg/L		08-JUN-07	MX	R533081
	Lead (Pb)	< 0.005		0.005	mg/L		08-JUN-07	MX	R533081
	Tin (Sn)	< 0.05		0.05	mg/L		08-JUN-07	MX	R533081
	Strontium (Sr)	0.092		0.002	mg/L		08-JUN-07	MX	R533081
	Titanium (Ti)	0.003		0.001	mg/L		08-JUN-07	MX	R533081
	Thallium (TI)	<0.05		0.05	mg/L		08-JUN-07	MX	R533081
	Vanadium (V)	0.002		0.001	mg/L		08-JUN-07	MX	R533081
	Zinc (Zn)	0.003		0.001	mg/L		08-JUN-07	MX	R533081
	Carlos and Carlos and			1.00					
	Iron Bacteria	9000		25	CFU/mL		18-JUN-07	DJK	R536541
	Methane, dissolved	110		0.005	mg/L	08-JUN-07	08-JUN-07	JDV	R532856
	Sulfur Reducing Bacteria	<200		200	CFU/mL		15-JUN-07	RBD	R535886
TC and I	EC by MPN				the Manual State				Converte 1
	MPN - Total Coliforms	<1		1	MPN/100mL		06-JUN-07	DJK	R531591
	MPN - E. coli	<1		1	MPN/100mL		06-JUN-07	DJK	R531591
Major Ion	s & Dissolved Metals								
	Chloride (Cl)	264		0.1	mg/L		06-JUN-07	LHH	R532324
Dissolve	ed Trace Metals			1.2.2					Summer 1
	Silver (Ag)	<0.005		0.005	mg/L		09-JUN-07	MX	R533071
	Aluminum (Al)	<0.01		0.01	mg/L		09-JUN-07	MX	R533071
	Boron (B)	0.31		0.05	mg/L		09-JUN-07	MX	R533071
	Barium (Ba)	0.138	10100	0.003	mg/L		09-JUN-07	MX	R533071
	Beryllium (Be)	< 0.001		0.001	mg/L		09-JUN-07	MX	R533071
	Cadmium (Cd)	<0.001		0.001	mg/L		09-JUN-07	MX	R533071
	Cobalt (Co)	<0.002		0.002	mg/L		09-JUN-07	MX	R5330/1
	Chromium (Cr)	< 0.005		0.005	mg/L		06-JUN-07	SYF	R531902
	Copper (Cu)	< 0.001		0.001	mg/L		09-JUN-07	MX	R533071
	Molybdenum (Mo)	<0.005		0.005	mg/L		09-JUN-07	MX	K5330/1
	NICKEI (NI)	< 0.002		0.002	mg/L		09-JUN-07	MX	R5330/1
	Lead (Pb)	<0.005		0.005	mg/L		09-JUN-07	XIVI	R5530/1
		< 0.05		0.05	mg/L		09-JUN-07	IVIX	R5330/1
	Strontium (Sr)	0.087		0.005	mg/L		09-JUN-07	MX	K5330/1
	litanium (Ti)	0.001		0.001	mg/L		09-2014-01	MX	R533071

L513388 CONTD PAGE 3 of 5

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample Details/Parameters		Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L513388-1	RAW WATER-SIGNER WELL								
Sampled By:	HVBL on 04-JUN-07 @ 16:00								
Matrix:	WATER					1			1.
Major Ion	s & Dissolved Metals								
Dissolve	ed Trace Metals								1.1.1.1
1.	Thallium (TI)	<0.05		0.05	mg/L		09-JUN-07	MX	R533071
	Vanadium (V)	0.004		0.001	mg/L		09-JUN-07	MX	R533071
	Zinc (Zn)	0.004		0.001	mg/L		09-JUN-07	MX	R533071
ICP meta	als for routine water								
	Calcium (Ca)	0.9		0.5	mg/L		11-JUN-07	JF	R533836
	Potassium (K)	1.1		0.1	mg/L		11-JUN-07	JF	R533836
	Magnesium (Mg)	<0.1		0.1	mg/L		11-JUN-07	JF	R533836
	Sodium (Na)	514		1	mg/L		11-JUN-07	JF	R533836
Ion Bala	nce Calculation								
	Ion Balance	115	RRV		%		11-JUN-07		
	TDS (Calculated)	1150			mg/L		11-JUN-07		· · · · · ·
	Hardness (as CaCO3)	2			mg/L		11-JUN-07		2
	Iron (Fe)-Dissolved	0.020		0.005	mg/L		06-JUN-07	SYF	R531902
	Manganese (Mn)-Dissolved	0.003		0.001	mg/L		06-JUN-07	SYF	R531902
	Nitrate and Nitrite as N	<0.07		0.07	mg/L		07-JUN-07		
	Nitrate-N	< 0.05		0.05	mg/L		06-JUN-07	LHH	R532324
	Nitrite-N	<0.05		0.05	mg/L		06-JUN-07	LHH	R532324
	Sulphate (SO4)	4.5		0.5	ma/L		06-JUN-07	LHH	R532324
pH. Con	ductivity and Total Alkalinity			1.41.61					
, · · ·	pH	8.5		0.1	pH		06-JUN-07	MAT	R532396
	Conductivity (EC)	1870		3	uS/cm		06-JUN-07	MAT	R532396
	Bicarbonate (HCO3)	704		5	mg/L		06-JUN-07	MAT	R532396
	Carbonate (CO3)	15		5	mg/L		06-JUN-07	MAT	R532396
	Hydroxide (OH)	<5		5	mg/L		06-JUN-07	MAT	R532396
	Alkalinity, Total (as CaCO3)	602		5	mg/L		06-JUN-07	MAT	R532396

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

L522182 CONTD.... PAGE 2 of 3

Sample Details	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L522182-1 Sampled By: Matrix:	RAW WATER SIGNER WELL CLIENT on 04-JUN-07 @ 16:00 WATER								
	Methane, dissolved	110		0.005	mg/L	26-JUN-07	26-JUN-07	CFR	R540243
	* Refer to Referenced Information for Q	ualifiers (if any) and	Methodolog	у.					
	- 0								